%cc
incore 5/4/3/2 # Corresponding to no of virtuals index stored on disk
cc_restart 3 # CCSD energy calculated from stored converged amplitudes
NumProc _ # No of processors being used
DF
NRoots
fnothresh
fnothresh_ex
DoNataux
Nataux_thresh
Nataux_thresh_ex
DoCore False # Target the core orbitals
CoreHole 0 # Orbital from which the root counting in started
DoCVS False # Enables the core-valence separation true
CVSMIN 0 #
CVSMAX 0
DoR3OPT
DoR3CVS
DoR3CVSOPT
DoADC2
end
A typical input file for core-ionization with IP-EOM-CCSD
! IP-EOM-CCSD aug-cc-pVDZ SPINORBITAL Bohr
%cc
NRoots 1
DoCore True
cc_convergence 1e-7
end
*xyz 0 1
O 0.000000000000 -0.143225816552 0.000000000000
H 1.638036840407 1.136548822547 -0.000000000000
H -1.638036840407 1.136548822547 -0.000000000000
The output is
Root: 1 IP value: 0.4359 a.u. 11.860471 eV
Dominant Transition
9 --> 0.93
It shows that the first IP value of water
The triples correction can initiated with IP-EOM-CCSD* keyword
! IP-EOM-CCSD* aug-cc-pVDZ SPINORBITAL Bohr
%cc
NRoots 1
DoCore True
cc_convergence 1e-7
end
*xyz 0 1
O 0.000000000000 -0.143225816552 0.000000000000
H 1.638036840407 1.136548822547 -0.000000000000
H -1.638036840407 1.136548822547 -0.000000000000
The Output is
--------IP-EOM-CC Triples Correction-----------
Root: 1 EOM-CCSD IP value 544.221722 eV Triples Correction -2.014933 eV Final EOM-CCSD* IP value 542.206788 eV
The triples correction leads to lowering of the IP value by 2.01 eV and much better agreement with experiment. Rest of the error is due to the smaller basis set. Simulation of core-ionization requres much larger basis
A sample input file will look like
! FNO-IP-EOM-CCSD* unc-6311++g** Bohr aug-cc-pvtz-ri
%cc
incore 3
pct_occ 0.995
DoADC2 True
NRoots 2
CVSMIN 0
CVSMAX 1
CoreHole 0
DoCVS True
DoCore True
DF True
cc_convergence 1e-6
end
*xyz 0 1
C 0.00000 0.00000 0.00000
O 0.00000 0.00000 -2.19265
O 0.00000 0.00000 2.19265
*
The Output is
--------------------------------------------------
- -
- -
---------PT2 corrected EOM-CCSD* values-----------
- -
- -
--------------------------------------------------
root 1 Uncorrected EOMP-IP-CCSD* value 542.2887131992753 eV PT Correction -0.4347806417118026 eV Final 541.8539325575636 eV
1 --> -0.9411833842733173
root 2 Uncorrected EOMP-IP-CCSD* value 542.2906255186488 eV PT Correction -0.4347989856053473 eV Final 541.8558265330435 eV
0 --> -0.9411752675425874
One can use two different for the threshold for the ground and ionized state.
A sample input file will look like
! BI-FNO-IP-EOM-CCSD* aug-cc-pVTZ aug-cc-pvtz-ri
%cc
incore 3
pct_occ 0.99
pct_occ_ex 0.995
DoNataux True
Natauxpct 30
NRoots 1
DoCVS True
DF True
DoCore True
DoADC2 True
end
*xyz 0 1
O 0. 0. 0.
H 0. -0.757 0.587
H 0. 0.757 0.587
*
The Output is
--------------------------------------------------
- -
- -
---------PT2 corrected EOM-CCSD* values-----------
- -
- -
--------------------------------------------------
root 1 Uncorrected EOMP-IP-CCSD* value 539.2777859299792 eV PT Correction 0.05280845640562867 eV Final 539.3305943863849 eV
0 --> -0.9453821023738714
The Keyword DoNataux True enables the trancation of auxilary orbital using natural auxilary orbitals. Natauxpct 30 denotes only 30% of the total auxilary orbitals are kept
A sample input file will look like
! BI-FNO-IP-EOM-CCSD* 6311++g** aug-cc-pvdz-ri
%cc
incore 4
NRoots 1
DoCVS True
CVSMAX 0
DF True
DoCore True
DoR3OPT True
DoR3CVS True
pct_occ 0.99
pct_occ_ex 0.995
DoNataux True
Natauxpct 30
DoADC2 True
end
*xyz 0 1
O 0.000000000000 0.000000000000 0.000000000000
C 0.000000000000 0.000000000000 -1.128000000000
*
The Output is
--------------------------------------------------
- -
- -
---------PT2 corrected EOM-CCSD* values-----------
- -
- -
--------------------------------------------------
root 1 Uncorrected EOMP-IP-CCSD* value 542.943972342854 eV PT Correction -0.2257243439486594 eV Final 542.7182479989053 eV
0 --> -0.9421501993813002
A sample input file will look like
! XES-IP-EOM-CCSD* cc-pVDZ aug-cc-pvtz-ri
%cc
incore 3
NRoots 3
DoCore True # Core ionization
CoreHole 0 # Core orbital from which the ionization takes place
DoCVS True # Use core valence separation
CVSMIN 0 # The minimum orbital included to core valence separation
CVSMAX 1 # The maximum orbital used for core-valence separation
end
*xyz 0 1
O 0. 0. 0.
H 0. -0.757 0.587
H 0. 0.757 0.587
*
The Output is
----------------------
XES SPECTRA EOM-CCSD
----------------------
root 1 IP value 19.533122114873127 531.5353189899275
Dominant Transition
0 --> 4
root 2 IP value 19.44791697928015 529.2167168401714
Dominant Transition
0 --> 3
root 3 IP value 19.288394836991284 524.8758003042068
Dominant Transition
0 --> 2
----------------------
XES SPECTRA EOM-CCSD*
----------------------
root 1 IP value 19.472203723921638 529.8776077353556
Dominant Transition
0 --> 4
root 2 IP value 19.387265446732705 527.5662673364903
Dominant Transition
0 --> 3
root 3 IP value 19.23019002621276 523.2919309933017
Dominant Transition
0 --> 2
It uses the BI-FNO approximation for the calculation
A sample input file will look like
! XES-BI-FNO-IP-EOM-CCSD* cc-pVDZ aug-cc-pvtz-ri
%cc
incore 3
NRoots 3
pct_occ 0.99 #FNO threshold for ground state
pct_occ_ex 0.995 #FNO threshold for excited state
DoNataux True # Natural auxiliary orbital
Natauxpct 30 # Threshold for natural auxiliary orbital
DF True # Density Fitting On
DoCVS True
DoCore True
end
*xyz 0 1
O 0. 0. 0.
H 0. -0.757 0.587
H 0. 0.757 0.587
*
The Output is
----------------------
XES SPECTRA EOM-CCSD
----------------------
root 1 IP value 19.535057939599632 531.5879966523852
Dominant Transition
0 --> 4
root 2 IP value 19.448941373977863 529.2445926686856
Dominant Transition
0 --> 3
root 3 IP value 19.28916569820228 524.8967769794804
Dominant Transition
0 --> 2
----------------------
XES SPECTRA EOM-CCSD*
----------------------
root 1 IP value 19.474346928383227 529.9359286151644
Dominant Transition
0 --> 4
root 2 IP value 19.388632922121342 527.603479076766
Dominant Transition
0 --> 3
root 3 IP value 19.2314922163473 523.3273661912427
Dominant Transition
0 --> 2