General Introduction to research in our group
Multiphase flows appear in many industrial as well as natural phenomena, for instance carbon sequestration, steel-making, fuel combustion, food processing, rainfall, hail formation and lava flows. Any process involving melting, evaporation, solidification or involving two or more phases comes under this topic. Some of the less understood problems which are active areas of research in the field of multiphase flows are: moving contact lines, phase change, breakup and coalescence of jets and drops and flow of multiple non-Newtonian fluids.
Many of the above-mentioned processes are frequently influenced by temperature and concentration gradients. The presence of these gradients at the interface separating the fluids leads to interfacial tension gradients, which in turn induce tangential stresses, commonly known as Marangoni stresses. This phenomenon also plays a vital role in many technological applications, such as single crystal growth of silicon and turbine blades. However, it is very challenging to obtain the detailed flow features both numerically and experimentally. Therefore, one of the focus areas of the group is to obtain accurate numerical models of flows driven by temperature and concentration gradients.