Publication list

2020-2021

[1] "Mapping rules from Nodal Line Semimetal to Topological Crystalline Insulator in Face centered Cubic Lattice"

I. Tateishi : Phys. Rev. Research 2, 043112 (2020).

[2] "Nodal Lines and Mapping rule to Mirror Chern numbers in Ca2As Family"

I. Tateishi : Phys. Rev. B 102, 155111 (2020).

[3] "Universal Quantization of Magnetic Susceptibility Jump at Topological Phase Transition"

S. Ozaki and M. Ogata : Phys. Rev. Research 3, 013058 (2021).

[4] "Magnonic Quadrupole Topological Insulator in Antiskyrmion Crystals"

T. Hirosawa, S. A. Diaz, J. Klinovaja, and D. Loss : Phys. Rev. Lett. 125, 207204 (2020).

[5] "Predicted photoinduced topological phases in organic salt α−(BEDT-TTF)2I3"

K. Kitayama and M. Mochizuki : Phys. Rev. Research 2, 023229 (2020).

[6] "Topological Dirac nodal loops in nonsymmorphic hydrogenated monolayer boron"

N. T. Cuong, I. Tateishi, M. Cameau, M. Niibe, N. Umezawa, B. Slater, K. Yubuta, T. Kondo, M. Ogata, S. Okada, and I. Matsuda :

Phys. Rev. B 101, 195412 (2020).

[7] "Microscopic theory of magnetoconductivity at low magnetic fields in terms of Berry curvature and orbital magnetic moment"

V. Könye and M. Ogata : arXiv:2006.15882 (2020).

[8] "Electric Transport of Nodal Line Semimetal in Single-Component Molecular Conductor"

Y. Suzumura, R. Kato, and M. Ogata : Crystals, 10(10), 862 (2020).

[9] "Anomalous conductivity of two-dimensional Dirac electrons in organic conductor under pressures"

Y. Suzumura and M. Ogata : arXiv:2009.14594 (2020).

[10] "Theory of phason drag effect on thermoelectricity"

H. Fukuyama and M. Ogata : Phys. Rev. B 102, 205136 (2020).

2019-2020

[1] "Range of Validity of Sommerfeld–Bethe Relation Associated with Seebeck Coefficient and Phonon Drag Contribution"

M. Ogata and H. Fukuyama : J. Phys. Soc. Jpn. 88, 074703 (2019).

[2] "Effect of Phonon Drag on Seebeck Coefficient Based on Linear Response Theory: Application to FeSb2" (Editor's Choice)

H. Matsuura, H. Maebashi, M. Ogata, and H. Fukuyama : J. Phys. Soc. Jpn. 88, 074601 (2019).

[3] "Trimer classical spin liquid from interacting fractional charges"

K. Tokushuku, T. Mizoguchi, and M. Udagawa : Phys. Rev. B 100, 134415 (2019).

[4] "Thermoelectric transport coefficients of a Dirac electron gas in high magnetic fields"

V. Könye and M. Ogata : Phys. Rev. B 100, 155430 (2019).

[5] "Chiral Magnonic Edge States in Ferromagnetic Skyrmion Crystals Controlled by Magnetic Fields"

S. A. Diaz, T. Hirosawa, J. Klinovaja, and D. Loss : Phys. Rev. Research 2, 013231 (2019).

[6] "Probing multipolar quantum spin ice in pyrochlore materials"

A. S. Patri, M. Hosoi, S. Lee, and Y. B. Kim : Phys. Rev. Research 2, 033015 (2020).

[7] "Nuclear spin relaxation rate near the disorder-driven quantum critical point in Weyl fermion systems"

T. Hirosawa, H. Maebashi, and M. Ogata : Phys. Rev. B 101, 155103 (2020).

[8] "Distinguishing dipolar and octupolar quantum spin ices using contrasting magnetostriction signatures"

A. S. Patri, M. Hosoi, and Y. B. Kim : Phys. Rev. Research 2, 023253 (2020).

[9] "Spin Wave Radiation by a Topological Charge Dipole"

S. A. Diaz, T. Hirosawa, D. Loss, C. Psaroudaki : Nano Lett. 20(9), 6556–6562 (2020).

2018-2019

[1] “Magnetoresistance of a three-dimensional Dirac gas”

V. Könye and M. Ogata: Phys. Rev. B 98, 195420(2018).

[2] “Nuclear Magnetic Relaxation and Knight Shift Due to Orbital Interaction in Dirac Electron Systems”

H. Maebashi, T. Hirosawa, M. Ogata, and H. Fukuyama: to appear in J. Phys. Chem. Solids 128, 138-143 (2019).

[3] “Role of acoustic phonons in exotic conductivity of two-dimensional Dirac electrons”

Y. Suzumura and M. Ogata: Phys. Rev. B 98, 161205(R) (2018).

[4] “New Magnetic Phases in the Chiral Magnet CsCuCl3 under High Pressures”

M. Hosoi, H. Matsuura, M. Ogata: J. Phys. Soc. Jpn. 87, 075001-1 (2018).

[5] “Theory for Anomalous NMR Response in Pb1−xTlxTe on Charge Kondo Effect”

K. Miyake and H. Matsuura: arXiv:1806.00254

[6] “Face Centered Cubic SnSe as a Z2 Trivial Dirac Nodal Line Material”

I. Tateishi, H. Matsuura: J. Phys. Soc. Jpn. 87, 073702-1 (2018).

[7] “Semi-metallicity of free-standing hydrogenated monolayer boron from MgB2”

I. Tateishi, N. T. Cuong, C. A. S. Moura, M. Cameau, R. Ishibiki, A. Fujino, S. Okada, A. Yamamoto, M. Araki, S. Ito, S. Yamamoto, M. Niibe,

T. Tokushima, D. E. Weibel, T. Kondo, M. Ogata, and I. Matsuda: Phys. Rev. Materials 3, 024004 (2019).

[8] “Mechanism for sub-gap optical conductivity in honeycomb Kitaev materials”

A. Bolens, H. Katsura, M. Ogata, and S. Miyashita: Phys. Rev. B 97, 161108(R) (2018).

[9] “Anomalous Temperature Behavior of the Chiral Spin Helix in CrNb3S6 Thin Lamellae”

Y. Togawa, J. Kishine, P. A. Nosov, T. Koyama, G. W. Paterson, S. McVitie, Y. Kousaka, J. Akimitsu, M. Ogata, and A. S. Ovchinnikov: Phys. Rev. Lett. 122, 017204 (2019).

[10] “Dzyaloshinskii-Moriya Interaction between Multipolar Moments in 5d1 Systems”

M. Hosoi, T. Mizoguchi, T. Hinokihara, H. Matsuura, and M. Ogata: J. Phys. Soc. Jpn. 89, 074702 (2020)