Mathematics 10 Pacing Guide - *Updated June 2024* This pacing guide replaces the previous yearly plan. It has been updated to reflect removed outcomes and provide flexibility for responsive instruction.
Math 10 Retrieval Practice Grid Semester #1 (English, French) *Updated October 2024*
Math 10 Retrieval Practice Grid Semester #2 (English, French) *Updated January 2025*
Mathigon Polypad - Polypad is a collection of free virtual manipulatives including algebra tiles which students can use to model the multiplication of polynomials. The Mathigon 101 webinar for secondary teachers demonstrates a number of available features.
EAL Support - Desmos offers a free suite of math software tools, including the Desmos Graphing Calculator and Scientific Calculator, as well as free digital classroom activities. Click on the globe in the tool bar to access the site in other languages.
M01 Students will be expected to solve problems that involve linear measurement, using SI and imperial units of measure, estimation strategies, and measurement strategies. [ME, PS, V]
M01.01 Provide referents for linear measurements, including millimetre, centimetre, metre, kilometre, inch, foot, yard, and mile, and explain the choices.
M01.02 Compare SI and imperial units, using referents.
M01.03 Estimate a linear measure, using a referent, and explain the process used.
M01.04 Justify the choice of units used for determining a measurement in a problem-solving context.
M01.05 Solve problems that involve linear measure, using instruments such as rulers, calipers, or tape measures.
M01.06 Describe and explain a personal strategy used to determine a linear measurement (e.g., circumference of a bottle, length of a curve, and perimeter of the base of an irregular 3-D object).
M02 Students will be expected to apply proportional reasoning to problems that involve conversions between SI and imperial units of measure. [C, ME, PS]
M02.01 Explain how proportional reasoning can be used to convert a measurement within or between SI and imperial systems.
M02.02 Solve a problem that involves the conversion of units within or between SI and imperial systems.
M02.03 Verify, using unit analysis, a conversion within or between SI and imperial systems, and explain the conversion.
M02.04 Justify, using mental mathematics, the reasonableness of a solution to a conversion problem.
M03 Students will be expected to solve problems, using SI and imperial units, that involve the surface area and volume of 3-D objects, including right cones, right cylinders, right prisms, right pyramids, and spheres. [CN, PS, R, V]
M03.01 Sketch a diagram to represent a problem that involves surface area or volume.
M03.02 Determine the surface area of a right cone, right cylinder, right prism, right pyramid, or sphere, using an object or its labelled diagram.
M03.03 Determine the volume of a right cone, right cylinder, right prism, right pyramid, or sphere, using an object or its labelled diagram.
M03.04 Determine an unknown dimension of a right cone, right cylinder, right prism, right pyramid, or sphere, given the object’s surface area or volume and the remaining dimensions.
M03.05 Solve a problem that involves surface area or volume, given a diagram of a composite 3-D object.
M03.06 Describe the relationship between the volumes of right cones and right cylinders with the same base and height, and right pyramids and right prisms with the same base and height.
M01 On s’attend à ce que les élèves sachent résoudre des problèmes comportant la mesure linéaire à l’aide d’unités de mesure des systèmes international (SI) et impérial, de stratégies d’estimation et de stratégies de mesure. [CE, RP, V]
M01.01 Fournir des référents pour des mesures linéaires, y compris le millimètre, le centimètre, le mètre, le kilomètre, le pouce, le pied, la verge et le mille, et en expliquer le choix.
M01.02 Comparer, à l’aide de référents, des unités de mesure SI et impériales.
M01.03 Estimer une mesure linéaire à l’aide d’un référent et expliquer la démarche suivie.
M01.04 Justifier le choix des unités choisies dans la détermination d’une mesure dans un contexte de résolution de problèmes.
M01.05 Résoudre des problèmes comportant la mesure linéaire à l’aide d’instruments tels que des règles, des pieds à coulisse ou des rubans à mesurer.
M01.06 Décrire et expliquer une stratégie personnelle utilisée pour effectuer une mesure linéaire (exemple : la circonférence d’une bouteille, la longueur d’un arc et le périmètre de la base d’un objet à trois dimensions de forme irrégulière).
M02 On s’attend à ce que les élèves sachent appliquer le raisonnement proportionnel pour résoudre des problèmes comportant des conversions entre des unités de mesure SI et impériales. [C, CE, RP]
M02.01 Expliquer comment le raisonnement proportionnel peut être utilisé pour effectuer la conversion d’une unité de mesure à l’intérieur d’un même système et entre les unités de mesure SI et impériales.
M02.02 Résoudre un problème comportant la conversion d’une unité de mesure à l’intérieur d’un même système et entre les unités de mesure SI et impériales.
M02.03 Vérifier et expliquer, à l’aide de l’analyse des unités, une conversion de mesure à l’intérieur d’un même système et entre les unités de mesure SI et impériales.
M02.04 Justifier, à l’aide du calcul mental, la vraisemblance d’une solution à un problème de conversion.
M03 On s’attend à ce que les élèves sachent résoudre des problèmes comportant l’aire totale et le volume exprimés en unités de mesure SI et impériales d’objets à trois dimensions, y compris des cônes droits, des cylindres droits, des prismes droits, des pyramides droites et des sphères. [L, RP, R, V]
M03.01 Esquisser un diagramme pour représenter un problème comportant l’aire totale ou le volume.
M03.02 Déterminer l’aire totale d’un cône droit, d’un cylindre droit, d’un prisme droit, d’une pyramide droite ou d’une sphère à l’aide d’un objet à trois dimensions ou d’un diagramme annoté.
M03.03 Déterminer le volume d’un cône droit, d’un cylindre droit, d’un prisme droit, d’une pyramide droite ou d’une sphère à l’aide d’un objet à trois dimensions ou d’un diagramme annoté.
M03.04 Déterminer une dimension inconnue d’un cône droit, d’un cylindre droit, d’un prisme droit, d’une pyramide droite ou d’une sphère à partir de son aire totale ou de son volume et des autres dimensions.
M03.05 Résoudre un problème comportant l’aire totale ou le volume à partir d’un diagramme d’un objet à trois dimensions composé.
M03.06 Décrire la relation entre les volumes de cônes droits et de cylindres droits de même base et de même hauteur, et de pyramides droites et de prismes droits de même base et de même hauteur.
Additional Resources and Activities for M01 (linear measurement):
Estimation180 - Estimation180 has a picture for each day of the school year that can be used to develop estimation strategies and benchmarks for both SI and imperial units of measurement.
Esti-Mysteries and Esti-Clipboards - A math routines for estimation created by blogger Steve Wyborney .
HRCE adapted Esti-mysteries focused on metric measurements: Estimate the length of a pencil , estimate the length of a bank of lockers.
HRCE adapted Esti-mysteries for measurement's other than length: Estimate the capacity of a vase, estimate the weight of a brick, estimate the weight of a bunch of bananas, estimate the weight of a pumpkin
Additional Resources and Activities for M02 (conversions between SI and imperial units ):
Would You Rather Have a Stack of Quarters from the floor to the top of your Head OR $225? - Whichever answer you choose, justify your reasoning with mathematics.
Desmos Activity: Linear Measurement Units and Conversions - Practice converting both Imperial and SI units of length.
Additional Resources and Activities for M03 (surface area and volume - cones, cylinders, prisms, pyramids, and spheres):
3D solid generator - A Desmos tool you can use to create images of 3D solids for your own handouts or activities.
Which One Doesn't Belong? (Shapes) - Find a reason why each shape does not belong with the rest of the group.
Desmos Activity: Volume comparisons with prisms and pyramids, cones and cylinders - Based on Prisms and Pyramids - A 3-Act math task to find out how many pyramids it takes to fill a prism with the same height. Great videos and questions.
Desmos Activity: Volume of Right Pyramids and Cones - Students calculate the volume of right pyramids and cones, as well as determine missing dimensions when volume is known.
Desmos Activity: Volume of a Sphere - Students will discover and explore the use of the formula for the volume of a sphere.
3 Act Task (from Dan Meyer) - Will the pot of sauce overflow when you add meatballs?
Volume and Surface Area Row Game - Two columns of problems, A and B. Each row has the same answer. Students work in pairs to each do one column of questions and compare answers.
Same Surface, Different Deep Structure (SSDD) Problems - A math routine giving students four similar looking problems that require different strategies to solve.
Volume and Surface Area Spider - Each of these four "spider" activities contains 6 questions on surface area and volume of prisms, cones, spheres and pyramids. These ask a mixture of finding surface area/volume and working backwards. Inspired by Andy Lutwyche.
Volume and Surface Area Add 'Em Up - Two sets of four questions. In each set, students add up the solutions to the four questions to get a sum. They can then check the sum to see if they have everything correct. If not, they work to find their mistake.
Desmos Activity: Three Dimensional Shapes Composite Shapes SA Practice - Students will determine Volume and Surface Area for a variety of composite objects.
Volume and Surface Area Digital Breakout - Students solve a series of measurement problems and puzzles on a google site to open a safe.
Volume and Surface Area Math Passport activity - A series of four stations where students work in individually, in pairs or small groups to complete activities at stations. After successfully completing a station, students will get their teacher to "stamp" their passport and then move to the next station.
Unit 7 Cumulative Review
Grain Bins - *Added May 2025* Students determine the number of grain bins they must purchase to store the grain harvested on their hypothetical farm. They must solve problems that involve linear measurement, proportional reasoning, and the volume of 3-D objects (from the Alberta Assessment Consortium)