Take my Code and Generate your Truth!
(You may want to adjust the epoch and batch size depending on the strength of your processor)
import tensorflow as tf
import numpy as np
import random
import sys
# Define the filename of the text file you want to use for training
filename = "bible.txt"
# Read the text file and convert it to lowercase
with open(filename, 'r', encoding='utf-8') as f:
text = f.read().lower()
# Create a set of all the unique characters in the text
chars = sorted(list(set(text)))
# Create a dictionary mapping each character to its index in the chars list
char_to_index = {char: index for index, char in enumerate(chars)}
# Create a dictionary mapping each index to its corresponding character in the chars list
index_to_char = {index: char for index, char in enumerate(chars)}
# Define the sequence length and step size
sequence_length = 100
step_size = 1
# Generate sequences of input and output data
inputs = []
outputs = []
for i in range(0, len(text) - sequence_length, step_size):
inputs.append(text[i:i+sequence_length])
outputs.append(text[i+sequence_length])
# Convert the input and output data to arrays
X = np.zeros((len(inputs), sequence_length, len(chars)), dtype=bool)
y = np.zeros((len(inputs), len(chars)), dtype=bool)
for i, sequence in enumerate(inputs):
for j, char in enumerate(sequence):
X[i, j, char_to_index[char]] = 1
y[i, char_to_index[outputs[i]]] = 1
# Define the RNN model
model = tf.keras.models.Sequential([
tf.keras.layers.LSTM(128, input_shape=(sequence_length, len(chars))),
tf.keras.layers.Dense(len(chars), activation='softmax')
])
# Compile the model
model.compile(loss='categorical_crossentropy', optimizer='adam')
# Train the model
model.fit(X, y, batch_size=16, epochs=20)
# Generate text
start_index = random.randint(0, len(text) - sequence_length - 1)
generated_text = text[start_index:start_index + sequence_length]
sys.stdout.write(generated_text)
for i in range(1000):
# Convert the input sequence to a one-hot encoded array
x = np.zeros((1, sequence_length, len(chars)))
for j, char in enumerate(generated_text):
x[0, j, char_to_index[char]] = 1
# Predict the next character using the RNN model
predictions = model.predict(x)[0]
next_index = np.argmax(predictions)
next_char = index_to_char[next_index]
# Add the predicted character to the generated text
generated_text += next_char
generated_text = generated_text[1:]
# Print the generated text
sys.stdout.write(next_char)
sys.stdout.flush()