Journal Articles
2025
[21] Y. Kim1*, D. H. Kim*, "Support-Dependent Formic Acid Dehydrogenation over Pd-Supported Catalysts Induced by Hydrogen Spillover" Energy & Fuels, 2025, 39, 34, 16399–16406.
Before Gachon University
2024
[20] Y. Kim1, J. Lee, A. Krishnan, J. Luo, X. Chen, F. M. Alamgir, D. W. Flaherty*, “Formation of Acetonitrile and Ethylene from Activation of Ethane over Cobalt-Exchanged Aluminosilicates: Active Sites and Reaction Pathways” Applied Catalysis B: Environment and Energy, 2024, 359, 124513.
2023
[19] Y. Kim1, J. Kim, M. H. Wiebenga, S. H. Oh, and D. H. Kim*, “Abatement of photochemical smog precursors through complete hydrocarbon oxidation over commercial Pd catalysts under fuel-lean conditions with NO promoting effect”, Environmental Pollution, 2023, 338, 122721.
[18] Y. Kim1, and D. H. Kim*, “Elucidating the alloying effect of PdAg/CNT catalysts on formic acid dehydrogenation with kinetic isotope effect”, Molecular Catalysis, 2023, 547, 113343.
[17] J. Kirk1, Y. Kim1, Y.-J. Lee1, M. Kim, D.-S. Min, P. S. Kim, J. H. Seo, Y. Kim, J. Lee, J. W. Choung, H. Sohn, S.-W. Nam, C.-W. Yoon, Y. Kim, H. Jeong “Pushing the limits of sodium borohydride hydrolysis for on-board hydrogen generation systems” Chemical Engineering Journal, 2023, 446, 143233.
[16] Y. Kim1, G. Jang, D. H. Kim*, “Hydrogen Production via Cerium-Promoted Dehydrogenation of Formic Acid Catalyzed by Carbon-Supported Palladium Nanoparticles”, ACS Applied Nano Materials, 2023, 6, 6929-6939.
2022
[15] A. Badakhsh1, D. Song, S. Moon, H. Jeong, H. Sohn, S. W. Nam, P. S. Kim, J. H. Seo, Y. Kim, J. Lee, J. W. Choung, Y. Kim “COX-free LOHC dehydrogenation in a heatpipe reformer highly integrated with a hydrogen burner” Chemical Engineering Journal, 2022, 449, 137679.
[14] J. Lee1, Y. Kim1, S. Hwang1, G. S. Hong1, E. Lee, H. Lee, C. Jeong, C. H. Kim, J. S. Yoo*, and D. H. Kim*, “Toward gasoline vehicles with zero harmful emissions by storing NO at Pd nanoparticle-CeO2 interface during the cold-start period”, Chem Catalysis, 2022, 2, 2289-2301.
[13] S. Hwang1, Y. Kim, J. Lee, E. Lee, H. Lee, C. Jeong, C. H. Kim, D. H. Kim*, “Promoting effect of CO on low-temperature NOx adsorption over Pd/CeO2 catalyst” Catalysis Today, 2022, 384-386, 88-96.
2021
[12] Y. Kim1, H. Lee, S. Yang, J. Lee, H. Kim, S. Hwang, S. W. Jeon, and D. H. Kim*, “Ultrafine Pd nanoparticles immobilized on amine-functionalized carbon nanotube for hydrogen production from formic acid”, Journal of Catalysis, 2021, 404, 324-333.
[11] J. Lee1, Y. Kim, S. Hwang. E. Lee, H. Lee, C. H. Kim, and D. H. Kim*, “Deactivation of Pd/Zeolites passive NOx adsorber induced by NO and H2O: Comparative study of Pd/ZSM-5 and Pd/SSZ-13” Catalysis Today, 2021, 360, 350-355.
[10] Y. Kim1, J. Sung1, S. Kang, J. Lee, M.-H. Kang, S. Hwang, H. Park, J. Kim, Y. Kim, E. Lee, G.-S. Park, D. H. Kim*, and J. Park*, “Uniform Synthesis of Palladium Species Confined in Small-pore Zeolite via Full Ion-exchange Investigated by Cryogenic Electron Microscopy”, Journal of Materials Chemistry A, 2021, 9, 19796-19806.
2020
[9] Y. Kim1, and D. H. Kim*, “Hydrogen production from formic acid dehydrogenation over a Pd supported on N-doped mesoporous carbon catalyst: A role of nitrogen dopant”, Applied Catalysis A: General, 2020, 608, 117887.
[8] J. Lee1, J. Kim, Y. Kim, S. Hwang, H. Lee, C. H. Kim, and D. H. Kim*, “Improving NOx storage and CO oxidation abilities of Pd/SSZ-13 by increasing its hydrophobicity” Applied Catalysis B: Environmental, 2020, 277, 119190.
[7] Y. Kim1, S.-h. Kim, H. C. Kim, and D. H. Kim* “Mechanistic insights on aqueous formic acid dehydrogenation over Pd/C catalyst for efficient hydrogen production”, Journal of Catalysis, 2020, 389, 506-516.
2019
[6] J. Kim1, Y. Kim1, M. H. Wiebenga, S. H. Oh, and D. H. Kim*, “Oxidation of C3H8, iso-C5H12 and C3H6 under near-stoichiometric and fuel-lean conditions over aged Pt-Pd/Al2O3 catalysts with different Pt:Pd ratios”, Applied Catalysis B: Environmental, 2019, 251, 283–294.
[5] Y. Kim1, S. Hwang1, J. Lee, Y. Ryou, H. Lee, C. H. Kim, and D. H. Kim*, “Comparison of NOx Adsorption/Desorption Behaviors over Pd/CeO2 and Pd/SSZ-13 as Passive NOx Adsorbers for Cold Start Application”, Emission Control Science and Technology, 2019, 5, 172–182.
[4] Y. Kim1, and D. H. Kim*, “Understanding the effect of Pd size on formic acid dehydrogenation via size-controlled Pd/C catalysts prepared by NaBH4 treatment”, Applied Catalysis B: Environmental, 2019, 244, 684-693.
[3] Y. Ryou1, J. Lee, Y. Kim, S. Hwang, H. Lee, C. H. Kim, and D. H. Kim*, “Effect of reduction treatments (H2 vs. CO) on the NO adsorption ability and the physicochemical properties of Pd/SSZ-13 passive NOx adsorber for cold start application”, Applied Catalysis A: General, 2019, 569, 28-34.
[2] J. Lee1, Y. Ryou, S. Hwang, Y. Kim, S.-J. Cho, H. Lee, C. H. Kim, and D. H. Kim*, “Comparative study of the mobility of Pd species in SSZ-13 and ZSM-5, and its implication for catalytic activity after hydro-thermal aging as Passive NOx Adsorbers (PNAs) for cold-start applications” Catalysis Science & Technology, 2019, 9, 163-173.
2018
[1] Y. Kim1, J. Kim, and D. H. Kim*, “Investigation on the enhanced catalytic activity of Ni-promoted Pd/C catalyst for formic acid dehydrogenation: Effects of preparation methods and Ni/Pd ratios” RSC Advances, 2018, 8, 2441-2448.
Patents
International
US20240059558A1
J. Lee, J. W. Choung, Y. Kim, J. Seo, P. S. Kim, Y. Kim, J. Kirk, S. W. Nam, H. Sohn, Y. Kim, H. Jeong “Dehydrogenation reaction apparatus”
US20240055635A1
J. Lee, J. W. Choung, Y. Kim, J. Seo, P. S. Kim, Y. Kim, J. Kirk, S. W. Nam, H. Sohn, Y. Kim, H. Jeong “Dehydrogenation reaction device and control method thereof”
US20230348266A1
J. Seo, J. Lee, P. S. Kim, J. W. Choung, Y. Kim, S. M. Kim, K. Jeong, J. J. Lee, J. H. Park “Dehydrogenation method and hydrogen production system using the same”
US20230294057A1
P. S. Kim, J. W. Choung, Y. Kim, J. Seo, J. Lee, Y. Kim, S. W. Nam, H. Sohn, H. Jeong, D. G. Kang, A. Badakhsh, D. Song “Dehydrogenation reaction apparatus and system including the same”
US20230294981A1
J. Seo, J. Lee, P. S. Kim, J. W. Choung, Y. Kim, J. H. Park, S. M. Kim, J. J. Lee, K. Jeong “Low-temperature dehydrogenation method and hydrogen production system using the same”
US11952345B2 (Granted)
J. Seo, J. Lee, P. S. Kim, J. W. Choung, Y. Kim, J. H. Park, S. M. Kim, J. J. Lee, K. Jeong “Method for preparing bipyridine”
US20230256419A1
P. S. Kim, J. W. Choung, Y. Kim, J. Seo, J. Lee, S. Moon, C. Ahn, S. W. Nam, H. Sohn, Y. Kim, H. Jeong “Catalyst for a dehydrogenation reaction, a manufacturing method thereof, and a hydrogen production method using same”
US20230182100A1
Y. Kim, J. Seo, J. Lee, P. S. Kim, J. W. Choung, M. Kim, J. Kirk, S. W. Nam, H. Jeong, Y. Kim, “Dehydrogenation reaction apparatus and control method thereof”
US11826750B2 (Granted)
Y. Kim, J. W. Choung, J. Seo, J. Lee, P. S. Kim, Y. Kim, Y.-J. Lee, J. Kirk, S. W. Nam, S. H. Sohn, Y. Kim, H. Jeong “Dehydrogenation reaction apparatus”
US20230183061A1
Y. Kim, J. W. Choung, J. Seo, J. Lee, P. S. Kim, M. Kim, Y. Kim, Y.-J. Lee, J. Kirk, S. W. Nam, Y. Kim, H. Jeong “Dehydrogenation reaction device and system having the same”
Domestic
KR102509026B1 (Granted)
D. H. Kim, Y. Kim, “Metal oxide catalyst supported by zeolite and method of manufacturing the same”