Publications

Check my Google Scholar for a full list of publications.

Selected Publications (* Equal Contribution)

Robust Learning with Progressive Data Expansion against Spurious Correlation 

Yihe Deng*, Yu Yang*, Baharan Mirzasoleiman, and Quanquan Gu

Advances in Neural Information Processing Systems (NeurIPS), 2023. (pdf) (project page)

Keywords: spurious correlation, robustness, data balancing.

Abstract 👇

While deep learning models have shown remarkable performance in various tasks, they are susceptible to learning non-generalizable spurious features rather than the core features that are genuinely correlated to the true label. In this paper, beyond existing analyses of linear models, we theoretically examine the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features. Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process. In light of this, we propose a new training algorithm called PDE that efficiently enhances the model’s robustness for a better worst-group performance. PDE begins with a group-balanced subset of training data and progressively expands it to facilitate the learning of the core features. Experiments on synthetic and real-world benchmark datasets confirm the superior performance of our method on models such as ResNets and Transformers. On average, our method achieves a 2.8% improvement in worst-group accuracy compared with the state-of-the-art method, while enjoying up to 10× faster training efficiency. Codes are available at https://github.com/uclaml/PDE. 

Towards Understanding Mixture of Experts in Deep Learning 

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, Yuanzhi Li

Advances in Neural Information Processing Systems (NeurIPS), 2022. (pdf)

Keywords: mixture of experts, deep learning theory. 

Abstract 👇

The Mixture-of-Experts (MoE) layer, a sparsely-activated model controlled by a router, has achieved great success in deep learning. However, the understanding of such architecture remains elusive. In this paper, we formally study how the MoE layer improves the performance of neural network learning and why the mixture model will not collapse into a single model. Our empirical results suggest that the cluster structure of the underlying problem and the non-linearity of the expert are pivotal to the success of MoE. This motivates us to consider a challenging classification problem with intrinsic cluster structures. Theoretically, we proved that this problem is hard to solve by a single expert such as a two-layer convolutional neural network (CNN). Yet with the MoE layer with each expert being a two-layer CNN, the problem can be solved successfully. In particular, our theory shows that the router can learn the cluster-center features, which helps divide the input complex problem into simpler classification sub-problems that individual experts can conquer. To our knowledge, this is the first theoretical result toward formally understanding the mechanism of the MoE layer for deep learning. 

Selected Pre-prints

Mitigating Object Hallucination in Large Vision-Language Models via Classifier-Free Guidance.

Linxi Zhao*, Yihe Deng*, Weitong Zhang, Quanquan Gu

arXiv preprint arXiv:2402.08680 , Preprints. (pdf)

Keywords: LVLMs, hallucination, classifier-free guidance.

Abstract 👇

The advancement of Large Vision-Language Models (LVLMs) has increasingly highlighted the critical issue of their tendency to hallucinate non-existing objects in the images. To address this issue, previous works focused on using specially curated datasets or powerful LLMs (e.g., GPT-3.5) to rectify the outputs of LVLMs. However, these approaches require either expensive training/fine-tuning or API access to advanced LLMs to correct the model's output post-generation. In this paper, we tackle this challenge by introducing a framework called Mitigating hallucinAtion via classifieR-Free guIdaNcE (MARINE), which is both training-free and API-free, and can effectively and efficiently reduce object hallucinations during the generation process. Specifically, MARINE enriches the visual context of LVLMs by integrating existing open-source vision models, and employs classifier-free guidance to incorporate the additional object grounding features to improve the precision of LVLMs' generations. Through comprehensive evaluations across 6 popular LVLMs with diverse evaluation metrics, we demonstrate the effectiveness of MARINE, which even outperforms existing fine-tuning-based methods. Remarkably, it not only reduces hallucinations but also improves the detailedness of LVLMs' generations, as assessed by GPT-4V.

Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models.

Zixiang Chen*, Yihe Deng*, Huizhuo Yuan*, Kaixuan Ji, Quanquan Gu

arXiv preprint arXiv:2401.01335, Preprints. (pdf)

Keywords: LLMs, fine-tuning, synthetic data.

Abstract 👇

Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional humanannotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM’s performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.

Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves.

Yihe Deng, Weitong Zhang, Zixiang Chen and Quanquan Gu

arXiv preprint arXiv:2311.04205, Preprints. (pdf) (project page)

Keywords: LLMs, prompting, rephrasing.

Abstract 👇

Misunderstandings arise not only in interpersonal communication but also between humans and Large Language Models (LLMs). Such discrepancies can make LLMs interpret seemingly unambiguous questions in unexpected ways, yielding incorrect responses. While it is widely acknowledged that the quality of a prompt, such as a question, significantly impacts the quality of the response provided by LLMs, a systematic method for crafting questions that LLMs can better comprehend is still underdeveloped. In this paper, we present a method named ‘Rephrase and Respond’ (RaR), which allows LLMs to rephrase and expand questions posed by humans and provide responses in a single prompt. This approach serves as a simple yet effective prompting method for improving performance. We also introduce a two-step variant of RaR, where a rephrasing LLM first rephrases the question and then passes the original and rephrased questions together to a different responding LLM. This facilitates the effective utilization of rephrased questions generated by one LLM with another. Our experiments demonstrate that our methods significantly improve the performance of different models across a wide range to tasks. We further provide a comprehensive comparison between RaR and the popular Chain-of-Thought (CoT) methods, both theoretically and empirically. We show that RaR is complementary to CoT and can be combined with CoT to achieve even better performance. Our work not only contributes to enhancing LLM performance efficiently and effectively but also sheds light on a fair evaluation of LLM capabilities. Data and codes are available at https://github.com/uclaml/Rephrase-and-Respond.