52. Lee HG*, Kim J*, Park KH*, Lee H, Kim SB, Jung JY, Gwak E, Ahn JH, Jung JH†, Lee JC†, Seo PJ† (2025) High-temperature induced FKF1 accumulation promotes flowering by dispersion of GI and degradation of SVP. Nat Plants 11: 1282-1297.
51. Zubieta C, Hutin S, Jung JH, Xuelei Lai (2024) Phosphorylation of phyB by GSK3s, a key mechanism that brings temperature sensors together. New Phytol 245: 1335-1337.
50. Park J, Jung JH (2024) Revalidation of the ICE1–CBF Regulatory Model in Arabidopsis Cold Stress Response. J Plant Biol 67: 391-398.
49. Jeon J, Rahman MM, Yang EW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI (2024) Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 63: 57-72.
48. Park KH*, Kim SB*, Jung JH (2023) Analysis of temperature effects on the protein accumulation of the FT-FD module using newly generated Arabidopsis transgenic plants. Plant Direct 7: e552
47. Kim SB, Jung JH (2023) A straightforward strategy for reducing variability in flowering time at warm ambient temperatures. Plant Signal Behav 18: 2193913.
46. Quint M, Delker C, Balasubramanian S, Balcerowicz M, Casal JJ, Castroverde CDM, Chen M, Chen X, Smet ID, Fankhauser C, Franklin KA, Halliday KJ, Hayes S, Jiang D, Jung JH, Kaiserli E, Kumar SV, Maag D, Oh E, Park CM, Penfield S, Perrella G, Prat S, Reis RS, Wigge PA, Willige BC, Zanten M (2023) 25 Years of thermomorphogenesis research: milestones and perspectives. Trends Plant Sci 28: 1098-1100.
45. Jung JH*, Seo PJ*, Oh E*, Kim J (2023) Temperature perception by plants. Trends Plant Sci 28: 924-940.
44. Jenkitkonchai J, Marriott P, Yang W, Sriden N, Jung JH, Wigge PW, Charoensawan V (2021) Exploring PIF4 's contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. Plant Direct 5: e339.
43. Jung JH*, Barbosa AD*, Hutin S*, Kumita JR, Gao M, Derwort D, Silva CS, Lai X, Pierre E, Geng F, Kim SB, Baek S, Zubieta C, Jaeger KE, Wigge PA (2020) A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature 585: 256-260.
Featured in Nature “News and Views” (https://www.nature.com/articles/d41586-020-02442-x)
Recommended by F1000
42. Favero DS, Kawamura A, Shibata M, Takebayashi A, Jung JH, Suzuki T, Jaeger KE, Ishida T, Iwase A, Wigge PA, Neff MM, Sugimoto K (2020) AT-Hook Transcription Factors Restrict Petiole Growth by Antagonizing PIFs. Curr. Biol. 30: 1454-1466.
41. Silva CS*, Nayak A*, Lai X*, Hutin S, Hugouvieux V, Jung JH, López-Vidriero I, Franco-Zorrilla JM, Panigrahi KCS, Nanao MH, Wigge PA, Zubieta C (2020) Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc. Natl. Acad. Sci. USA. 117: 6901-6909.
40. Tong M*, Lee K*, Ezer D, Cortijo S, Jung JH, Charoensawan V, Box MS, Jaeger KE, Takahashi N, Mas P, Wigge PA, Seo PJ (2020) The Evening Complex
Establishes Repressive Chromatin Domains Via H2A.Z Deposition. Plant Physiol. 182: 612-625.
39. Lee JH, Jung JH, Park CM (2017) Light Inhibits COP1-Mediated Degradation of ICE Transcription Factors to Induce Stomatal Development in Arabidopsis. Plant Cell 29: 2817-2830. (IF, 8.688)
38. Ezer D, Jung JH, Lan H, Biswas S, Gregoire L, Box MS, Charoensawon V, Cortijo S, Lai X, Stöckle D, Zubieta C, Jaeger KE, Wigge PA (2017) The Evening Complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3: 17087. (IF, 10.300)
Recommended by F1000
37. Ha JH*, Lee HJ*, Jung JH, Park CM (2017) Thermo-Induce Maintenance of Photo-oxidoreductases Underlies Plant Autotrophic Development. Dev. Cell 41: 170-179. (IF, 9.174)
34. Jung JH*, Lee HJ*, Ryu JY, Park CM (2016) SPL3/4/5 Integrate Developmental Aging and Photoperiodic Signals into the FT FD Module
in Arabidopsis Flowering. Mol. Plant 9: 1647-1659. (IF, 8.827)
33. Jung JH*, Domijan M*, Klose C*, Biswas S*, Ezer D*, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JC, Schäfer E, Jaeger KE, Wigge PA (2016) Phytochromes Function as Thermosensors in Arabidopsis. Science 354: 886-889. (IF, 37.205) Featured in a Science Perspective (http://science.sciencemag.org/content/354/6314/832)
Recommended by F1000
30. Lee HJ, Jung JH, Cortés Llorca L, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5: 5473. (IF, 11.470)
29. Jung JH*, Lee HJ*, Park MJ*, Park CM (2014) Beyond ubiquitination: proteolytic and nonproteolytic roles of HOS1. Trends Plant Sci. 19: 538-545. (IF, 12.929) Recommended by F1000
28. Jung JH*, Lee S*, Yun J, Lee M, Park CM (2014) The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci. 215: 29-38. (IF, 3.607)
25. Jung JH*, Park JH*, Lee S, Toe TK, Kim JM, Seki M, Park CM (2013) The Cold Signaling Attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 Activates FLOWERING LOCUS C Transcription via Chromatin Remodeling under Short-Term Cold Stress in Arabidopsis. Plant Cell 25: 4378-4390. (IF, 9.575)
23. Jung JH, Seo PJ, Park CM (2012) The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress. J Biol. Chem. 287: 43277-43287. (IF, 4.651)
Recommended by F1000
21. Jung JH, Seo PJ, Ahn JH, Park CM (2012) Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J. Biol. Chem. 287: 16007-16016. (IF, 4.651)
16. Jung JH, Yun J, Seo PJ, Lee JH, Park CM (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J. 69: 577-588. (IF, 6.582)
13. Jung JH*, Seo PJ*, Kang SK, Park CM (2011) miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol. Biol. 76: 35-45. (IF, 4.150)
6. Jung JH, Seo YH, Seo PJ, Reyes JL, Yun J, Chua HC, Park CM (2007) The GIGANTEA-regulated MicroRNA172 mediated photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19: 2736-2748. (IF, 10.920)
Recommended by F1000
3. Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225: 1327-1338. (IF, 3.108)
2. Kim J*, Jung JH*, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, Chua NH, Park CM (2005) microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J. 42: 84-94. (IF, 6.969)