Light-matter Interaction and Nanoelectronics
Publications
Publications
Liang-Yan Hsu
Institute of Atomic and Molecular Sciences , Academia Sinica
在 gate.sinica.edu.tw 的電子郵件地址已通過驗證 - 首頁
2020
Selected Publications —
2017
Selected Publications —
Hsu, L.-Y.; Ding, W. D.; Schatz, G. C.*; Plasmon-Coupled Resonance Energy Transfer, J. Phys. Chem. Lett., 2017, 8, 2357-2367. (Feature Article).
[62] Lei, J.; Chen, Y.-K.; Wang, M.-J.; Ko, C. L.; Hung, W.-Y.; Hsu, L.-Y.*; Wu, T.-L.*; Cheng, C.-H.*; Azepine Modulation in Thermally Activated Delayed Fluorescence Emitters for OLEDs Achieving Nearly 40% EQE, ACS Materials Lett. 2025, 7, 1896–1904.
[61] Somayaji, H.; Wang, S.; Hsu, L.-Y.*; Scholes, G. D.*; Remarkable Orientation Dependence of Plasmon-Coupled Resonance Energy Transfer, J. Phys. Chem. C, 2025, 129, 4506–4516.
[60] Hsu, L.-Y.*; Chemistry Meets Plasmon Polaritons and Cavity Photons: A Perspective from Macroscopic Quantum Electrodynamics, J. Phys. Chem. Lett., 2025, 16, 1604-1619. (Invited Perspective Article)
[59] Shen, C.-E.; Tsai, H.-S.; Hsu, L.-Y.*; Non-Adiabatic Quantum Electrodynamic Effects on Electron-Nucleus-Photon Systems: Single Photonic Mode versus Infinite Photonic Modes, J. Chem. Phys., 2025, 162, 034107. (Feature Article, Special Issue: “2024 JCP Emerging Investigators Special Collection”)
[58] Wang, S.; Huang, J.-L.; Hsu, L.-Y.*; Theory of Molecular Emission Power Spectra. III. Non-Hermitian Interactions in Multichromophoric Systems Coupled with Polaritons, J. Chem. Phys., 2024, 161, 234113. (Special Issue: "Polaritonics for Next Generation Materials")
[57] Lei, J.; Chang, C.-W.; Chen, Y.-K.; Chou, P.-Y.; Hsu, L.-Y.*; Wu, T.-L.*; Cheng, C.-H.*; Strategy of Modulating Nonradiative Decay for Approaching Efficient Thermally Activated Delayed Fluorescent Emitters, J. Phys. Chem. C, 2024, 128, 16189-16198. (Special Issue: “TADF-Active Systems: Mechanism, Applications, and Future Directions”)
[56] Chuang, Y.-T.; Hsu, L.-Y.*; Anomalous Giant Superradiance in Molecular Aggregates Coupled to Polaritons, Phys. Rev. Lett., 2024, 133, 128001.
[55] Wei, Y.-C.*; Hsu, L.-Y.*; Wide-Dynamic-Range Control of Quantum-Electrodynamic Electron Transfer Reactions in the Weak Coupling Regime, J. Phys. Chem. Lett., 2024, 15, 7403-7410.
[54] Tsai, H.-S.; Shen, C.-E.; Hsu, L.-Y.*; Generalized Born–Huang Expansion under Macroscopic Quantum Electrodynamics Framework, J. Chem. Phys., 2024, 160, 144112. (2024 JCP Best Theory Paper Award by an Emerging Investigator, Special Issue: “2024 JCP Emerging Investigators Special Collection”)
[53] Chuang, Y.-T.; Hsu, L.-Y.*; Microscopic Theory of Exciton–Polariton Model Involving Multiple Molecules: Macroscopic Quantum Electrodynamics Formulation and Essence of Direct Intermolecular Interactions, J. Chem. Phys., 2024, 160, 114105. (Special Issue: “Light-matter Interaction at the Nano and Molecular Scale”)
[52] Lei, J; Lou, T.-A.; Chen, C.-R.; Chuang, C.-H.; Liu, H.-Y.; Hsu, L.-Y.; Chao, Y.-C.; Wu, T.-L.*; Introduction of a Chiral Biphenanthrene-Diol Unit to Achieve Circularly Polarized Thermally Activated Delayed Fluorescence, Chem. Asian J., 2024, 19, e202300940.
[51] Chuang, Y.-T.; Hsu, L.-Y.*; Quantum Dynamics of Molecular Ensembles Coupled with Quantum Light: Counter-Rotating Interactions as an Essential Component, Phys. Rev. A, 2024, 109, 013717.
[50] Weng, S.-H.; Hsu, L.-Y.; Ding, W.*; Exploring Plasmonic Effect on Exciton Transport: A Theoretical Insight from Macroscopic Quantum Electrodynamics, J. Chem. Phys., 2023, 159, 154701.
[49] Hang, C.-C.; Hsu, L.-Y.*; Many-Body Coherence in Quantum Transport, Phys. Rev. B, 2023, 108, 125422.
[48] Wang, S.; Hsu, L.-Y.*; Exploring Superradiance Effects of Molecular Emitters Coupled with Cavity Photons and Plasmon Polaritons: A Perspective from Macroscopic Quantum Electrodynamics, J. Phys. Chem. C, 2023, 127, 12904-12912. (Invited Article, Special Issue: “Early-Career and Emerging Researchers in Physical Chemistry Volume 2”)
[47] Tsai, H.-S.; Shen, C.-E.; Hsu, S.-H.; Hsu, L.-Y.*; Effects of Non-Adiabatic Electromagnetic Vacuum Fluctuations on Internal Conversion, J. Phys. Chem. Lett., 2023, 14, 5924-5931.
[46] Wei, Y.-C.; Chen, B.-H.; Ye, R.-S.; Huang, H.-W.; Su, J.-X.; Lin, C.-Y.; Hodgkiss, J.; Hsu, L.-Y.; Chi, Y.*; Chen, K.*; Lu, C.-H.*; Yang, S.-D.*; Chou, P.-T.*; Excited-State THz Vibrations in Aggregates of PtII Complexes Contribute to the Enhancement of Near-Infrared Emission Efficiencies, Angew. Chem. Int. Ed., 2023, 62, e202300815.
[45] Lee, M.-W.; Hsu, L.-Y.*; Polariton-Assisted Resonance Energy Transfer beyond Resonant Dipole-Dipole Interaction: A Transition-Current-Density Approach, Phys. Rev. A, 2023, 105, 053709.
[44] Wei, Y.-C.; Hsu, L.-Y.*; Polaritonic Huang–Rhys Factor: Basic Concepts and Quantifying Light–Matter Interactions in Media, J. Phys. Chem. Lett., 2023, 14, 2395–2401.
[43] Shen, C.-E.; Hsu, S.-C.; Tsai, H.-S.; Hsu, L.-Y.*; Vibration-Induced Symmetry Breaking in Hybrid Light-Matter Dimer States, J. Chin. Chem. Soc., 2023, 70, 655-661.
[42] Chuang, Y.-T.; Wang, S.; Hsu, L.-Y.*; Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. II. Polariton-mediated population dynamics in a dimer system, J. Chem. Phys., 2022, 157, 234109.
[41] Wang, S.; Chuang, Y.-T.; Hsu, L.-Y.*; Macroscopic quantum electrodynamics approach to multichromophoric excitation energy transfer. I. Formalism, J. Chem. Phys., 2022, 157, 184107.
[40] Wu, T.-L.*; Lei, J.; Hsieh, C.-M.; Chen, Y.-K.; Huang, P.-Y.; Lai, P.-T.; Chou, T.-Y.; Lin, W.-C.; Chen, W.; Yu, C.-H.; Hsu, L.-Y.; Lin, H.-W.; Cheng, C.-H.*; Substituent engineering of the diboron molecular architecture for a nondoped and ultrathin emitting layer, Chem. Sci., 2022, 13, 12996-13005.
[39] Wei, Y.-C.; Hsu, L.-Y.*; Cavity-Free Quantum-Electrodynamic Electron Transfer Reactions, J. Phys. Chem. Lett., 2022, 13, 9695–9702.
[38] Chuang, Y.-T.; Lee, M.-W.; Hsu, L.-Y.*; Tavis-Cummings model revisited: A perspective from macroscopic quantum electrodynamics, Front. Phys., 2022, 10, 980167.
[37] Wang, S.; Chuang, Y.-T.; Hsu, L.-Y.*; Simple but Accurate Estimation of Light-Matter Coupling Strength and Optical Loss for a Molecular Emitter Coupled with Photonic Modes, J. Chem. Phys., 2021, 155, 134117. (Special Issue: “Advances in Modeling Plasmonic Systems”)
[36] Wei, Y.-C.; Lee, M.-W.; Chou, P.-T.; Scholes. G. D.; Schatz, G. C.; Hsu, L.-Y.*; Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair? J. Phys. Chem. C, 2021, 125, 18119-18128. (Special Issue: “125 Years of The Journal of Physical Chemistry”)
[35] Lee, M.-W.; Chuang, Y.-T.; Hsu, L.-Y.*; Theory of Molecular Emission Power Spectra. II. Angle, Frequency, and Distance Dependence of Electromagnetic Environment Factor of a Molecular Emitter in Plasmonic Environments, J. Chem. Phys., 2021, 155, 074101. (Special Issue: “2021 JCP Emerging Investigators Special Collection”)
[34] Hsu, L.-Y.*; Yen, H.-C.; Lee, M.-W.; Sheu, Y.-L.; Chen, P.-C.; Dai, H*; Chen, C.-C.*; Large-Scale Inhomogeneous Fluorescence Plasmonic Silver Chips: Origin and Mechanism, Chem, 2020, 6, 3396-3408.
[33] Wang, S; Lee, M.-W.; Chuang, Y.-T.; Scholes. G. D.*; Hsu, L.-Y.*; Theory of Molecular Emission Power Spectra. I. Macroscopic Quantum Electrodynamics Formalism, J. Chem. Phys., 2020, 153, 184102. (Special Issue: “Excitons: Energetics and Spatio-temporal Dynamics”)
[32] Lee, M.-W.; Hsu, L.-Y.*; Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons, J. Phys. Chem. Lett., 2020, 11, 6796-6804.
[31] Chiang, T.-M.; Hsu, L.-Y.*; Quantum Transport with Electronic Relaxation in Electrodes: Landauer-Type Formulas Derived from the Driven Liouville-von Neumann Approach, J. Chem. Phys., 2020, 153, 044103. (Special Issue: “JCP Emerging Investigators Special Collection”)
[30] Wang. S; Scholes. G. D.*; Hsu, L.-Y.*; Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons, J. Phys. Chem. Lett., 2020, 11, 5948-5955. (Virtual Issue: “Polaritons in Physical Chemistry”)
[29] Yen, H.-C.; Su, M-N; Liu, Y.-C.; Lee, M.-W.; Sheu, Y.-L.; Hsu, L.-Y.*; Chen, C.-C.*; Design of Plasmon Resonance Shifts by the Galvanic Replacement Degree of Au-Ag Nanozappers, J. Phys. Chem. C, 2019,123, 29298-29305.
[28] Fu, B; Hsu, L.-Y.*; Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor II: Effects of Electron-Phonon Coupling and Vibrational Relaxation. J. Chem. Phys., 2019, 151, 054704.
[27] Wang. S; Scholes. G. D.*; Hsu, L.-Y.*; Quantum Dynamics of a Molecular Emitter Strongly Coupled with Surface Plasmon Polaritons: A Macroscopic Quantum Electrodynamics Approach, J. Chem. Phys., 2019, 151, 014105. (Editor’s Pick, Editors’ Choice in 2019, Special Issue: “Dynamics of Open Quantum Systems”)
[26] Chiang, T.-M.; Huang, Q.-R.; Hsu, L.-Y.*, Electric Current Fluctuations Induced by Molecular Vibrations in the Adiabatic Limit: Molecular Dynamics-Driven Liouville von Neumann Approach, J. Phys. Chem. C, 2019,123, 10746-10755. (Special Issue “Abraham Nitzan Festschrift”)
[25] Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y.*, Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons, J. Phys. Chem. Lett., 2018, 9, 7032-7039.
[24] Ding, W; Hsu, L.-Y.*; Chad, C. W.; Schatz, G. C.*; Plasmon-Coupled Resonance Energy Transfer II: Exploring the Peaks and Dips in the Electromagnetic Coupling Factor, J. Phys. Chem. C, 2018, 122, 22650-22659.
[23] Fu, B; Mosquera, M. A.; Schatz, G. C.; Ratner, M. A.; Hsu, L.-Y.*; Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor, Nano Lett., 2018, 18, 5015-5023.
[22] Hsu, L.-Y.; Jin, B.Y.; Chen, C.-H.; Peng, S.-M.*; Reaction: New Insights into Molecular Electronics, Chem, 2017, 3, 378-379.
[21] Hsu, L.-Y.; Ding, W. D.; Schatz, G. C.*; Plasmon-Coupled Resonance Energy Transfer, J. Phys. Chem. Lett., 2017, 8, 2357-2367. (Feature Article).
[20] Sheu, Y.-L.; Hsu, L.-Y.; Chou, P.-T.; Wu, H.-T.*; Entropy-Based Time-Varying Window Width Selection for Nonlinear-Type Time-Frequency Analysis, Int. J. Data Sci. Anal. (JDSA), 2017, 3, 231-245.
[19] Ding, W. D.; Hsu, L.-Y.*; Schatz, G. C.*; Plasmon-Coupled Resonance Energy Transfer: A Real-Time Electrodynamics Approach, J. Chem. Phys., 2017, 146, 064109.
[18] Hsu, L.-Y.*; Rabitz, H.*; Theory of Molecular Conductance Using a Modular Approach, J. Chem. Phys., 2016, 145, 234702.
[17] Hsu, L.-Y.*; Wu, N.; Rabitz, H.*; Conductance and Activation Energy for Electron Transport in Series and Parallel Intramolecular Circuits, Phys. Chem. Chem. Phys., 2016, 18, 32087-32095.
[16] Ting, T.-C.; Hsu, L.-Y.; Huang, M.-J.; Homg, E.-C.; Lu, H.-C.; Hsu, C.-H.; Jiang, C.-H.; Jin, B.-Y.*; Peng, S.-M.*; Chen, C.-H.*; Energy-Level Alignment for Single-Molecule Conductance of Extended Metal-Atom Chains, Angew. Chem. Int. Ed., 2015, 54, 15734-15738 (Chosen as a Very Important Paper).
[15] Sheu, Y.-L.; Wu, H.-T.*; Hsu, L.-Y*.; Exploring Laser-Driven Quantum Phenomena from a Time-Frequency Analysis Perspective: A Comprehensive Study, Opt. Express, 2015, 23, 30459-30482.
[14] Hsu, L.-Y.*; Rabitz, H.*, Coherent Light-Driven Electron Transport through Polycyclic Aromatic Hydrocarbon: Laser Frequency, Field Intensity, and Polarization Angle Dependence, Phys. Chem. Chem. Phys., 2015, 17, 20617-20629.
[13] Hsu, L.-Y.*; Rabitz, H.*, Coherent Revival of Tunneling, Phys. Rev. B, 2015, 92, 035410.
[12] Liao, K.-C.; Hsu, L.-Y.; Bowers, C. M.; Rabitz, H*; Whitesides, G. M.*, Molecular Series-Tunneling Junctions, J. Am. Chem. Soc., 2015, 137, 5948-5954.
[11] Hsu, L.-Y.*; Chen, C.-Y.; Li, E. Y.*; Rabitz, H*, Gate Control of Artificial Single-Molecule Electric Machines. J. Phys. Chem. C, 2015, 119, 4753-4759.
[10] Sheu, Y.-L.; Hsu, L.-Y.*; Wu, H.-T.*; Li P.-C.; Chu. S.-I.*, A New Time-Frequency Method to Reveal Quantum Dynamics of Atomic Hydrogen in Intense Laser Pulses: Synchrosqueezing Transform, AIP Advances, 2014, 4, 117138.
[9] Hsu, L.-Y.*; Xie, D.; Rabitz, H*, Light-Driven Electron Transport through a Molecular Junction Based on Cross-Conjugated Systems, J. Chem. Phys., 2014, 141,124703.
[8] Hsu, L.-Y.*; Wu, N.; Rabitz, H*, Gate Control of the Conduction Mechanism Transition from Tunneling to Thermally Activated Hopping, J. Phys. Chem. Lett., 2014, 5, 1831-1836.
[7] Huang, M.-J.; Hsu, L.-Y.#; Fu, M.-D.; Chuang, S.-T.; Tien, F.-W.; Chen, C.-H*, Conductance of Tailored Molecular Segments: a Rudimentary Assessment by Landauer Formulation, J. Am. Chem. Soc., 2014, 136, 1832-1841.
[6] Hsu, L.-Y.*; Li, E. Y.*; Rabitz, H.*, Single-Molecule Electric Revolving Door, Nano Lett., 2013, 13, 5020-5025.
[5] Hsu, L.-Y.; Rabitz, H.*, Single-Molecule Phenyl-Acetylene-Macrocycle-Based Optoelectronic Switch Functioning as a Quantum-Interference-Effect Transistor, Phys. Rev. Lett., 2012, 109, 186801.
[4] Hsu, L.-Y.*; Tsai T-W.; Jin, B.-Y.*, Transport through a Mixed-Valence Molecular Transistor in the Sequential-Tunneling Regime: Theoretical Insight from the Two-Site Peierls–Hubbard Model, J. Chem. Phys., 2010, 133, 144705.
[3] Hsu, L.-Y.; Jin, B.-Y.*, An Investigation of Quantum Transport by the Free-Electron Network Model: Resonance and Interference Effects, Chem. Phys., 2009, 355 (2-3), 177-182.
[2] Hsu, L.-Y.; Huang, Q.-R.; Jin, B.-Y.*, Charge Transport through a Single Molecular Wire Based on Linear Multimetal Complexes: a Non-Equalibrium Green’s Function Approach, J. Phys. Chem. C, 2008, 112, 10538-10541.
[1] Hsu, L.-Y.; Jin, B.-Y.*, Bandwidth, Intensity and Lineshape of the Transmission Spectrum in the Single Molecular Junction, Chem. Phys. Lett. 2008, 457 (1-3), 279-283.