Speaker: Stepan Paul
Abstract: If you want to understand something well, you should know how to break it. Most of our theorems in multivariable calculus (Clairaut's, Fubini's, ...) come with some condition about "nice" functions. In this talk, we look at some "naughty" functions to see when these theorems fail.
Speaker: Bjoern Meutzel (Dartmouth)
Abstract: We develop a unifying geometric intuition that allows us to gain insight into the relationship between the geometry of a surface and its harmonic forms. This approach is then applied to surfaces with small simple closed geodesics to gain insight into the energy distribution of these forms on the surface.
Speaker: Kelsey Houston-Edwards (Olin College)
Abstract: We'll play some familiar games in some unfamiliar contexts and try to generate conjectures about the possible outcomes. Then we'll prove some of these conjectures using theorems from combinatorics and game theory. This exploration should be accessible to all, with options to dive deeper into the proofs or just play some games.
Speaker: Glen Whitney
Abstract: There are various things in math that you just know are true: among all shapes with a given surface area, the sphere encloses the most volume, a trefoil knot is really knotted, a continuous simple closed curve has an inside and an outside, etc. Yet when you try to prove them, you suddenly discover that you are sticking your toes into deep (and possibly shark-infested) waters. At this math table, I'll try to convince you that the familiar fact that there are just five regular solids is a fact of this particularly vexing character (and hopefully have a bit of fun along the way).
Speaker: Shyam Narayanan
Abstract: Divide and Conquer is a common technique in theoretical computer science and has many cool applications! I'll begin by talking briefly about algorithms and the divide and conquer technique, and will explain how this technique can be used for the well-known Merge Sort algorithm. I'll finally explain the 1-Center Clustering with Outliers problem and show how one can get a linear-time algorithm for it using divide and conquer techniques.
Speaker: Oliver Knill
Abstract:
The Goldbach comet is the graph of the function which tells in how many ways an integer 2n can be written as a sum of two primes. While it is preposterous trying to prove that the function is positive (this is the Goldbach conjecture), one can investigate the comet statistically and experiment in other number systems. I'm personally convinced that EVERY mathematician has secretly worked on the problem, but of course few admit it as there is a serious danger to reach a high score on the ``Prime numbers crackpot index" of Chris Caldwell (https://primes.utm.edu/notes/crackpot.html) Having not much to lose in matters of reputation, I can tell about my own foolish attempts which started 35 years ago both trying to find a root of the comet as well as trying to prove that none exists. There will be also a bit of history. While serious mathematicians use heavy analytic number theory, I will explain a simple real analysis attempt which only uses single variable calculus and relates to the Riemann zeta function. There is no reason for excitement: the approach does not prove it but there are interesting patterns and opportunities to experiment with computer algebra systems.
Speaker: Mark Kong
Abstract: The Strong Law of Large Numbers is a way to formalize the notion that "Expected value is what you expect to get on average in the long run." We will discuss an analog of this claim for the St. Petersburg Paradox, a game with infinite expected value. Time permitting, we will also mention an analog of the Weak Law of Large Numbers.
A panel of graduate students will host a question and answer session on applying for and attending graduate school. Undergraduates will have the opportunity to ask questions, and learn more about what graduate work entails.
Panelists TBA
Speaker: Daniel Kim
Abstract: Given a set of tiles, can you use them to cover the entire plane without any overlaps? The attempt to answer this question led to the discovery of various tilings exhibiting intricate structures, such as the Wang tilings, the Penrose tilings, and the Socolar–Taylor tiling. In this talk, I will try to eliminate these beautiful tilings and make everything periodic and orderly.
Come on by to share and learn what Harvard students have done with math outside their classes, such as REUs, internships, and other research. Dinner at 6:00, panel starts at 6:20. Sponsored by CREWS (Clusters Engaging Womxn in Mathematics).
The idea is to have students share (five minutes) the who, what, when, and where of a mathematical experience that was outside of their Harvard coursework. It would be great to highlight a variety of experiences ranging from intensive semesters abroad to seminars attended at MIT to internships to REUs or other work. It will be helpful for other students to hear how people found out about these experiences and the nuts and bolts of what was involved in participating!
Speaker: Sebastien Vasey
Title: Hypercomputation
Abstract: David Hilbert's "Entscheidungsproblem" asks for an algorithm to prove or disprove any mathematical statement. The non-existence of such an algorithm was proven independently by Church and Turing. This is often interpreted as meaning that there is no streamlined method to prove something: it takes hard work and creativity... Or does it? What did Church and Turing precisely prove? Could we imagine a hypercomputer capable of performing infinitely-many steps in a finite time? Could we build such a machine, or at least come close? I will discuss these questions and more.
Speaker: Davis Lazowski
Title: Quiver Representations
Abstract: Quiver representations give a beautiful, pictorial way to encode algebraic data. In this talk, the speaker will introduce quiver representations and study simple examples. At the end, the speaker will briefly survey applications to Lie theory and algebraic topology. The talk assumes some knowledge of linear algebra.
Speaker: Cliff Taubes
Title: Mysteries of 4 Dimensions
Abstract: The classification of spaces of dimensions 1-3 and 5—∞ is well understood. Dimension 4 is not understood. In fact, there are no compelling conjectures as to what the answer should be. I hope to explain some of this in the talk.
At 5:00pm in the same room, Gabriel Goldberg will be giving an overview of his fall tutorial "Infinite Combinatorics".