Dissection of Behavioral Components and the Role of Omega/Delta Turns for the Chemotaxis of C. elegans.
Suwazono K, Kuze K, Tazawa UT, Jang MS, Kunitomo H, Toyoshima Y, Iino Y.
Genes Cells. 2025; 30(4):e70026.
doi: 10.1111/gtc.70026.
Multiple p38/JNK mitogen-activated protein kinase (MAPK) signaling pathways mediate salt chemotaxis learning in C. elegans.
Huang T, Suzuki K, Kunitomo H, Tomioka M, Iino Y.
G3. 2023; 13(9):jkad129.
doi: 10.1093/g3journal/jkad129.
Different modes of stimuli delivery elicit changes in glutamate-driven, experience-dependent interneuron response in C. elegans.
Mabardi L, Sato H, Toyoshima Y, Iino Y, Kunitomo H.
Neurosci Res. 2023; 186:33-42.
doi: 10.1016/j.neures.2022.10.004.
Caenorhabditis elegans Exhibits Morphine Addiction-like Behavior via the Opioid-like Receptor NPR-17.
Ide S, Kunitomo H, Iino Y, Ikeda K.
Front Pharmacol. 2022; 12:802701.
doi: 10.3389/fphar.2021.802701.
Simultaneous recording of behavioral and neural responses of free-moving nematodes C. elegans.
Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y.
STAR Protoc. 2021; 2(4):101011.
doi: 10.1016/j.xpro.2021.101011.
Glutamate signaling from a single sensory neuron mediates experience-dependent bidirectional behavior in Caenorhabditis elegans.
Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y
Cell Rep. 2021; 35(8): 109177.
doi: 10.1016/j.celrep.2021.109177.
Roles of the ClC chloride channel CLH-1 in food-associated salt chemotaxis behavior of C. elegans.
Park C, Sakurai Y, Sato H, Kanda S, Iino Y, Kunitomo H.
Elife. 2021; 10:e55701.
doi: 10.7554/eLife.55701.
Caenorhabditis elegans che-5 is allelic to gcy-22.
Kunitomo H, Iino Y.
MicroPubl Biol. 2020; 2020:10.17912/micropub.biology.000313.
doi: 10.17912/micropub.biology.000313.
Multiple sensory neurons mediate starvation-dependent aversive navigation in Caenorhabditis elegans.
Jang MS, Toyoshima Y, Tomioka M, Kunitomo H, Iino Y.
Proc Natl Acad Sci U S A. 2019; 116(37):18673-18683.
doi: 10.1073/pnas.1821716116.
A Gustatory Neural Circuit of Caenorhabditis elegans Generates Memory-Dependent Behaviors in Na(+) Chemotaxis.
Wang L, Sato H, Satoh Y, Tomioka M, Kunitomo H, Iino Y.
J Neurosci. 2017; 37(8):2097-2111.
doi: 10.1523/JNEUROSCI.1774-16.2017.
Structural basis for Na(+) transport mechanism by a light-driven Na(+) pump.
Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Hososhima S, Ishizuka T, Hoque MR, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi R, Kogure K, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O.
Nature. 2015; 521(7550):48-53.
doi: 10.1038/nature14322.
Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
Satoh Y, Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y.
J Neurosci. 2014; 34(47):15631-7.
doi: 10.1523/JNEUROSCI.1757-14.2014.
Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans.
Ohno H, Kato S, Naito Y, Kunitomo H, Tomioka M, Iino Y.
Science. 2014; 345(6194):313-7.
doi: 10.1126/science.1250709.
Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
Kunitomo H, Sato H, Iwata R, Satoh Y, Ohno H, Yamada K, Iino Y.
Nat Commun. 2013; 4:2210.
doi: 10.1038/ncomms3210.
Roles for class IIA phosphatidylinositol transfer protein in neurotransmission and behavioral plasticity at the sensory neuron synapses of Caenorhabditis elegans.
Iwata R, Oda S, Kunitomo H, Iino Y.
Proc Natl Acad Sci U S A. 2011; 108(18):7589-94.
doi: 10.1073/pnas.1016232108.
Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans.
Yamada K, Hirotsu T, Matsuki M, Butcher RA, Tomioka M, Ishihara T, Clardy J, Kunitomo H, Iino Y.
Science. 2010; 329(5999):1647-50.
doi: 10.1126/science.1192020.
Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.
Adachi T, Kunitomo H, Tomioka M, Ohno H, Okochi Y, Mori I, Iino Y.
Genetics. 2010; 186(4):1309-19.
doi: 10.1534/genetics.110.119768.
Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs).
Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, Setou M.
J Biol Chem. 2010; 285(30):22936-41.
doi: 10.1074/jbc.C110.128280.
A reporter assay for G-protein-coupled receptors using a B-cell line suitable for stable episomal expression.
Saeki S, Kunitomo H, Narita Y, Mimura H, Nishi T, Sasaki K.
Anal Biochem. 2010; 400(2):163-72.
doi: 10.1016/j.ab.2010.01.036.
Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.
Takayama J, Faumont S, Kunitomo H, Lockery SR, Iino Y.
Nucleic Acids Res. 2010; 38(1):131-42.
doi: 10.1093/nar/gkp868.
A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans.
Hayashi Y, Hirotsu T, Iwata R, Kage-Nakadai E, Kunitomo H, Ishihara T, Iino Y, Kubo T.
Nat Neurosci. 2009; 12(8):981-7.
doi: 10.1038/nn.2347.
Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases.
Ortiz CO, Faumont S, Takayama J, Ahmed HK, Goldsmith AD, Pocock R, McCormick KE, Kunitomo H, Iino Y, Lockery S, Hobert O.
Curr Biol. 2009; 19(12):996-1004.
doi: 10.1016/j.cub.2009.05.043.
GPC-1, a G protein [gamma]-subunit, regulates olfactory adaptation in Caenorhabditis elegans.
Yamada K, Hirotsu T, Matsuki M, Kunitomo H, Iino Y.
Genetics. 2009; 181(4):1347-57.
doi: 10.1534/genetics.108.099002.
CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans.
Ikeda DD, Duan Y, Matsuki M, Kunitomo H, Hutter H, Hedgecock EM, Iino Y.
Proc Natl Acad Sci U S A. 2008; 105(13):5260-5.
doi: 10.1073/pnas.0711894105.
Caenorhabditis elegans DYF-11, an orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation.
Kunitomo H, Iino Y.
Genes Cells. 2008; 13(1):13-25.
doi: 10.1111/j.1365-2443.2007.01147.x.
The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.
Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y.
Neuron. 2006; 51(5):613-25.
doi: 10.1016/j.neuron.2006.07.024.
Go[alpha] regulates olfactory adaptation by antagonizing Gq[alpha]-DAG signaling in Caenorhabditis elegans.
Matsuki M, Kunitomo H, Iino Y.
Proc Natl Acad Sci U S A. 2006; 103(4):1112-7.
doi: 10.1073/pnas.0506954103.
MBR-1, a novel helix-turn-helix transcription factor, is required for pruning excessive neurites in Caenorhabditis elegans.
Kage E, Hayashi Y, Takeuchi H, Hirotsu T, Kunitomo H, Inoue T, Arai H, Iino Y, Kubo T.
Curr Biol. 2005; 15(17):1554-9.
doi: 10.1016/j.cub.2005.07.057.
Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails.
Kunitomo H, Uesugi H, Kohara Y, Iino Y.
Genome Biol. 2005; 6(2):R17.
doi: 10.1186/gb-2005-6-2-r17.
The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1.
Hanazawa M, Kawasaki I, Kunitomo H, Gengyo-Ando K, Bennett KL, Mitani S, Iino Y.
Mech Dev. 2004; 121(3):213-24.
doi: 10.1016/j.mod.2004.02.001.
A zinc-finger protein, Rst2p, regulates transcription of the fission yeast ste11(+) gene, which encodes a pivotal transcription factor for sexual development.
Kunitomo H, Higuchi T, Iino Y, Yamamoto M.
Mol Biol Cell. 2000; 11(9):3205-17.
doi: 10.1091/mbc.11.9.3205.
Schizosaccharomyces pombe pac2+ controls the onset of sexual development via a pathway independent of the cAMP cascade.
Kunitomo H, Sugimoto A, Wilkinson CR, Yamamoto M.
Curr Genet. 1995; 28(1):32-8.
doi: 10.1007/BF00311879.
Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe.
Maeda T, Watanabe Y, Kunitomo H, Yamamoto M.
J Biol Chem. 1994; 269(13):9632-7.
PMID: 8144551
Dye-filling of amphid neurons enhances phototaxis behavior in a LITE-1-dependent manner
Hirofumi Kunitomo,Masayoshi Kuroda, Yuichi Iino
nFuture 2025
Nara Women's University, Aug. 20, 2025.
Molecular and neural mechanisms of salt chemotaxis of C. elegans
Hirofumi Kunitomo
10th Meeting of Chemotaxis and Behavior
RESOL NO MORI, Feb. 15, 2025.
Dye-uptake of amphid neurons enhances phototaxis behavior in a LITE-1 dependent manner.
Hirofumi Kunitomo, Masayoshi Kuroda, Yuichi Iino
24th International C. elegans Conference
Scottish Event Campus, Glasgow, Scotland, Jun. 25, 2023.
ClCチャネルによる味覚応答の調節
パク・チャンヒョン, 神田真司, 飯野雄一, 國友博文
飢餓を感知する感覚神経は新たな行動戦略を生み出す
Jang Moon Sun, 飯野雄一, 國友博文