Published


1.    J. Hounie and T. Picon, “Local Gagliardo-Nirenberg Estimates for Elliptic Systems of Vector Fields”, Mathematical Research Letters, v. 18, p. 791-804, 2011.

2.    J. Hounie and T. Picon, “Local L^1 estimates for elliptic systems of complex vector fields”, Proceedings of American Mathematical Society, v. 143, p. 1501-1514, 2015.

3.    G. Hoepfner, J. Hounie and T. Picon, “Div-curl type estimates for elliptic systems of complex vector fields”, Journal of Mathematical Analysis and Applications, v. 429, 2, p. 774-799, 2015.

4.    M. D`Abbicco, M. Ebert and T. Picon, “Long time decay estimates in real Hardy spaces for evolution equations with structural dissipation”, Journal of Pseudo-Differential Operators and Applications, v. 7, p. 261-293, 2016.

5.    M. Ebert, R. Kapp and T. Picon, “L^1 – L^p estimates for radial solutions of the wave and application”, Annali di Matematica Pura ed Applicata, v. 195, p. 1081-1091, 2016.

6.    J. Hounie and T. Picon, “L^1 Sobolev estimates for (pseudo)-differential operators and applications”, Mathematische Nachrichten, v. 289, p. 1838-1854, 2016.

7.    M. D`Abbicco, M. Ebert and T. Picon, “Global existence of small data solutions to the semilinear fractional wave equation”, New Trends in Analysis and Interdisciplinary Applications, Pei Dang et alter (eds), Trends in Mathematics, Springer International Publishing AG, p. 465-471, 2017.

8.    L. Moonens and T. Picon, “Continuous solution for divergence-type equations associated to elliptic systems of complex vector fields”, Journal of Function Analysis, vol 275, 5, 1073-1099, 2018.

9.    L. Moonens and T. Picon, “Solving the equation div u=f in C_0(Rn,Rn), Proceedings of the Edinburgh Mathematical Society, v. 61, 1055-1061, 2018.

10.  C. Perez, T. Picon, O. Saari and M. Sousa, “Regularity of maximal functions on Hardy-Sobolev spaces”; Bulletin of the London Mathematical Society, v.50, 1007-1015, 2018. 

11.  M. D`abbicco, M. Ebert and T. Picon, “The critical exponent(s) for the semilinear fractional diffusive equation”, Journal of Fourier Analysis and Applications, v. 25, 3, 696-731, 2019;

12.  G. Hoepfner, R. Kapp and T. Picon, “On the continuity and compactness of pseudodifferential operators on localizable Hardy spaces”, Potential Analysis, 55 491-512,  2021;  link

13.  J. Hounie and T. Picon, “Local Hardy-Littlewood--Sobolev inequalities for canceling elliptic differential operators”, Journal of Mathematical Analysis and Applications, vol 494, 1, 124598, 2021;  link

14.  L. Moonens and T. Picon, “Local continuous solutions for canceling and elliptic linear differential operators”, Journal de Mathématiques Pures et Appliquéss, vol 149, 47-72,  2021;  link

15.  G. Dafni, C. Lau, T. Picon and C. Vasconcelos, “Inhonogeneous cancellations conditions and Calderón-Zygmund-type operators on hp’’, Nonlinear Analysis, vol 225, 113110, 2022; link

16.   C. Vasconcelos and T. Picon, “A note on Hardy continuity properties of strongly singular Calderón-Zygmund-type operators’’, Integral Equations and Operator Theory, v. 95, p. 1-30 (2023);

17.   P. De Napoli and T. Picon, “Stein Weiss Inequality in L1 norm for vector fields ’’, Proceedings of American Mathematical Society, v. 151, p. 1663-1679 (2023);

18.  M. de Almeida, T. Picon and C. Vasconcelos, A note on continuity of strongly singular Calderón-Zygmund operators in Hardy-Morrey spaces. In: Uwe Kähler, Michael Reissig, Irene Sabadini, Jasson Vindas. (Org.). Analysis, Applications, and Computations Proceedings of the 13th ISAAC Congress, Ghent, Belgium, 2021. 1ed.: Springer, 2023, p. 577-590;

19. G. Dafni, C. Ho, T. Picon and C. Vasconcelos, Necessary cancellation conditions for the boundedness of operators on local Hardy spaces, Potential Analysis, p. 1-11 (2023);

20. M. de Almeida and T. Picon, Fourier transform decay of distributions in Hardy-Morrey spaces; Results in Mathematics, v. 79, p. 104, 2024;

21. V. Biliatto and T. Picon, A Note on Lebesgue Solvability of Elliptic Homogeneous Linear Equations with Measure Data; Journal of Geometric Analysis, v. 34, p. 22, 2024;

22. L. Salge and T. Picon, Spectrum of elliptic homogeneous differential operators in dimension n on real scales of localized Sobolev spaces, Matemática Contemporânea, v. 59, p. 107-120, 2024;

       23. V. Biliatto and T. Picon, Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data 2024, Journal of Differential Equations, Volume 430, 15 June 2025, 113179;

  24. V. Biliatto, L. Moonens and T. Picon, Hausdorff dimension of removable sets for elliptic and canceling homogeneous differential operators in the class of bounded functions, Forum Mathematicum 37 (2025), no. 4, 1253–1258. 


        Accepted


      25. J. Coacale, C. Vasconcelos and T. Picon, Cancellation conditions and boundedness of Inhomogeneous Calderón-Zygmund operators on local Hardy spaces associate with spaces of homogeneous type, to appear Mathematische Annalen 2025. https://arxiv.org/abs/2412.14994



        Submitted


         26. C. Machado and T. Picon, Higher order div-curl type estimates for elliptic linear differential operators on localizable Hardy spaces; https://arxiv.org/abs/2501.03307

         27. V. Biliatto, J. Coacale and T. Picon, Solvability of elliptic homogeneous linear equations with measure data in weighted Lebesgue spaces; https://arxiv.org/abs/2504.16626

         28. C. Machado and T. Picon, Nonhomogeneous div-curl type estimates for system of complex vector fields on local Hardy space; http://arxiv.org/abs/2504.21249

       Preprints

        29. L. Salge, J. Coacalle and T. Picon, Hardy inequality on Hardy spaces revisited