Published Articles
Rahman, M. H., Hayes, A., Muralidharan, K., Loy, D. A., & Shafae, M. (2024). Additive manufacturing of hydrogel-based lunar regolith pastes: A pathway toward in-situ resource utilization and in-space manufacturing. Journal of Manufacturing Processes, 118, 269-282. https://doi.org/10.1016/j.jmapro.2024.03.024.
Rahman, M. H., Hamedani, E.Y., Son, Y. J., & Shafae, M. S. (2024). Taxonomy-driven Graph-Theoretic Approach for Manufacturing Cybersecurity Risk Modeling and Assessment. ASME Journal of Computing and Information Science in Engineering, 24 (2024): 071003-1. https://doi.org/10.1115/1.4063729.
Rahman, M. H., Wuest, T., & Shafae, M. (2023). Manufacturing cybersecurity threat attributes and countermeasures: Review, meta-taxonomy, and use cases of cyberattack taxonomies. Journal of Manufacturing Systems, 68, 196–208. https://doi.org/https://doi.org/10.1016/j.jmsy.2023.03.009.
Lin, Y., Shao, S., Rahman, M.H., Shafae, M., & Satam, P. (2024). DT4I4-Secure: Digital Twin Framework for Industry 4.0 Systems Security. In 2023 IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE. http://dx.doi.org/10.1109/UEMCON59035.2023.10316090.
Hasan, N., Rahman, M. H., Wessman, A., Smith, T. M., & Shafae, M. (2023). Process Defects Knowledge Modeling in Laser Powder Bed Fusion Additive Manufacturing: An Ontological Framework, Manufacturing Letters, vol. 35, pp. 822-833. https://doi.org/10.1016/j.mfglet.2023.08.132.
Rahman, M. H., Shafae, M. S. (2022). Physics-based detection of cyber-attacks in manufacturing systems: a machining case study, Journal of Manufacturing Systems, 64, 676-683. https://doi.org/10.1016/j.jmsy.2022.04.012.
Rahman, M. H., Rifat, M., Azeem, A., & Ali, S. M. (2018). A quantitative model for disruptions mitigation in a supply chain considering random capacities and disruptions at supplier and retailer. International Journal of Management Science and Engineering Management, 13(4), 265-273. https://doi.org/10.1080/17509653.2018.1436009.
Rifat, M., Rahman, M. H., & Das, D. (2017). A review on application of nanofluid MQL in machining. In AIP Conference Proceedings (Vol. 1919, No. 1, p. 020015). https://doi.org/10.1063/1.5018533.