5th Grade REACH Math

Visit Google Classroom to view resources and tools for learning.

Eureka Math Online Learning

  • Grade 6 Module 1 Ratio and Rates

    • Students begin 5th grade REACH Math by investigating the concepts of ratio and rate. They use multiple forms of ratio language and ratio notation, and formalize understanding of equivalent ratios. Students apply reasoning when solving collections of ratio problems in real world contexts using various tools (e.g., tape diagrams, double number line diagrams, tables, equations and graphs). Students bridge their understanding of ratios to the value of a ratio, and then to rate and unit rate, discovering that a percent of a quantity is a rate per 100. The 35 day module concludes with students expressing a fraction as a percent and finding a percent of a quantity in real world concepts, supporting their reasoning with familiar representations they used previously in the module.


  • Grade 6 Module 2 Decimals and Fractions

    • In Module 1, students used their existing understanding of multiplication and division as they began their study of ratios and rates. In Module 2, students complete their understanding of the four operations as they study division of whole numbers, division by a fraction and operations on multi-digit decimals. This expanded understanding serves to complete their study of the four operations with positive rational numbers, thereby preparing students for understanding, locating, and ordering negative rational numbers and algebraic expressions.


  • Grade 6 Module 3 Integers and the Coordinate Planes

    • Students are familiar with the number line and determining the location of positive fractions, decimals, and whole numbers from previous grades. Students extend the number line (both horizontally and vertically) in Module 3 to include the opposites of whole numbers. The number line serves as a model to relate integers and other rational numbers to statements of order in real-world contexts. In this module's final topic, the number line model is extended to two-dimensions, as students use the coordinate plane to model and solve real-world problems involving rational numbers.


  • Grade 6 Module 4 Expressions and Equations

    • In Module 4, Expressions and Equations, students extend their arithmetic work to include using letters to represent numbers in order to understand that letters are simply "stand-ins" for numbers and that arithmetic is carried out exactly as it is with numbers. Students explore operations in terms of verbal expressions and determine that arithmetic properties hold true with expressions because nothing has changed—they are still doing arithmetic with numbers. Students determine that letters are used to represent specific but unknown numbers and are used to make statements or identities that are true for all numbers or a range of numbers. They understand the relationships of operations and use them to generate equivalent expressions, ultimately extending arithmetic properties from manipulating numbers to manipulating expressions. Students read, write and evaluate expressions in order to develop and evaluate formulas. From there, they move to the study of true and false number sentences, where students conclude that solving an equation is the process of determining the number(s) that, when substituted for the variable, result in a true sentence. They conclude the module using arithmetic properties, identities, bar models, and finally algebra to solve one-step, two-step, and multi-step equations.


  • Grade 6 Module 5: Area, Surface Area, and Volume Problems

    • In this module, students utilize their previous experiences in order to understand and develop formulas for area, volume, and surface area. Students use composition and decomposition to determine the area of triangles, quadrilaterals, and other polygons. Extending skills from Module 3 where they used coordinates and absolute value to find distances between points on a coordinate plane, students determine distance, perimeter, and area on the coordinate plane in real-world contexts. Next in the module comes real-life application of the volume formula where students extend the notion that volume is additive and find the volume of composite solid figures. They apply volume formulas and use their previous experience with solving equations to find missing volumes and missing dimensions. The final topic includes deconstructing the faces of solid figures to determine surface area. To wrap up the module, students apply the surface area formula to real-life contexts and distinguish between the need to find surface area or volume within contextual situations.


  • Grade 7 Module 1 Ratio, Proportions, Unit Rate

    • Students build upon their previous study of ratios and rates to formally define proportional relationships and the constant of proportionality. Students explore multiple representations of proportional relationships by looking at tables, graphs, equations, and verbal descriptions. Students extend their understanding about ratios and proportional relationships to compute unit rates for ratios and rates specified by rational numbers. The module concludes with students applying proportional reasoning to identify scale factor and create a scale drawing.


  • Grade 7 Module 2 Computation with Integers

    • Earlier in 5th grade REACH Math, students formed a conceptual understanding of integers through the use of the number line, absolute value, and opposites and extended their understanding to include the ordering and comparing of rational numbers. This module uses an Integer Game: a card game that creates a conceptual understanding of integer operations and serves as a powerful mental model students can rely on during the module. Students build on their understanding of rational numbers to add, subtract, multiply, and divide signed numbers. Previous work in computing the sums, differences, products, and quotients of fractions serves as a significant foundation.


Critical Areas in 5th Grade REACH Math

  1. Students extend their understanding of ratios and develop understanding of proportionality to solve single- and multi-step problems. Students use their understanding of ratios and proportionality to solve a wide variety of percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease. Students solve problems about scale drawings by relating corresponding lengths between the objects or by using the fact that relationships of lengths within an object are preserved in similar objects. Students graph proportional relationships and understand the unit rate informally as a measure of the steepness of the related line, called the slope. They distinguish proportional relationships from other relationships.

  2. Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems.

  3. Students solve problems involving the area and circumference of a circle and surface area of three-dimensional objects. In preparation for work on congruence and similarity in 6th Grade PreAlgebra, they reason about relationships among two-dimensional figures using scale drawings and informal geometric constructions, and they gain familiarity with the relationship between angles formed by intersecting line. Students work with three-dimensional figures, relating them to two-dimensional figures by examining cross-sections. They solve real-world and mathematical problems involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes and right prisms.