In the Bio-Instrumentation and Measurement Laboratory (ARAKAWA LAB), we are driving research in advanced electronics aimed at applications in the healthcare field, focusing on the foundation and application of cutting-edge sensing devices based on electrical and electronic engineering, biomedical measurement, and bio-devices. We are dedicated to the development of healthcare devices through measurement of biological components and research on Human-friendly devices.
Internet of Things (IoT) sensing devices in healthcare
In our laboratory, we are developing a mouthguard-type biosensor for measuring chemical components in saliva using semiconductor microfabrication (MEMS) technology. Saliva in the oral cavity contains various components related to diseases such as diabetes and lifestyle-related diseases. For example, glucose, uric acid, and lactic acid. We are aiming for real-time measurement of chemical information in the oral cavity of living organisms as a new measurement and diagnostic method, and we are conducting research in this area. We are also developing wearable devices for monitoring biological information in bodily fluids and skin, aiming for Human-friendly monitoring.
Microfluidic Systems and Mobile Measurement Systems
We aim to construct a new biosensing system that integrates microfluidic devices with biosensors. By fabricating sensors on microfluidic devices, we aim to achieve detection of extremely small amounts (picomoles per liter or less) of components and long-term monitoring. Furthermore, we are building a mobile imaging system using polydimethylsiloxane (PDMS) or paper-based microfluidic devices and smartphones, promoting the development of new measurement systems utilizing IoT technology.
Graduate School of Engineering, Master’s Programs and Ph.D./Doctoral Programs
*Graduate School Guide (ebook)
*University Guide (ebook)
*Admission Information (Japanese・English)
If you are interested in applying to our graduate program, please contact us via the "Contact" section at the bottom of this page. We warmly welcome international students who wish to pursue graduate studies.
2025
1. Aoyagi R, Arakawa T, Iitani K, Mitsubayashi K, Sekine Y, Kaifuku Y, Development of dynamic gas generation system for ultratrace amounts of acetone at parts-per-trillion levels with low temperature permeation method, Discover Applied Sciences, 7, 4, 298, 2025.
2. Zhang B, Li N, Huang J, Arakawa T, Ishii K, Yashima R, Remaining Useful Life Prediction for Tools Based on Monitoring Data and Stochastic Degradation Model, Journal of Advanced Computational Intelligence and Intelligent Informatics, 29, 3, 668 – 676, 2025.
3. Ichikawa K, Iitani K, Zhao Y, Toma K, Arakawa T, Dao DV, Mitsubayashi K, A Mouthguard-type Biosensor for Direct Measurement of Glucose Intake in Drinks, Sensors and Materials, 37, 4(3), 1569-1578, 2025.
2024
1. Iitani K, Ishizuki N, Matsuhashi Y, Yokota K, Ichikawa K, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K, Biofluorometric Acetone Gas Sensor of Sub-ppbv Level Sensitivity, Analytical Chemistry, 96, 51, 20197–20203, 2024.
2. Iitani K, Ichikawa K, Toma K, Arakawa T, Mitsubayashi K, Biofluorometric Gas-Imaging System for Evaluating the Ripening Stages of “La France” Pear Based on Ethanol Vapor Emitted via the Epicarp, ACS Sensors, 9, 10, 5081–5089, 2024.
3. Iitani K, Suzuki M, Ichikawa K, Toma K, Arakawa T, Mitsubayashi K, Image Sensing of Gaseous Acetone Using Secondary Alcohol Dehydrogenase-Immobilized Mesh for Exhaled Air, Analytical Chemistry, 96, 28, 11549–11556, 2024.
4. Ichikawa K, Iitani K, Kawase G, Toma K, Arakawa T, Dao DV, Mitsubayashi K, Real-time salivary turbidity measurement with a mouthguard-type wearable sensor, Sensors and Actuators A: Physical, 376, 1, 115660, 2024.
5. Taguchi Y, Toma K, Iitani K, Arakawa T, Iwasaki Y, Mitsubayashi K, Long-range surface plasmon hydrogel aptasensor for sensitive, selective, and continuous measurement of vancomycin, Sensors and Actuators B: Chemical, 413, 135882, 2024.
6. Iitani K, Miura R, Lim J, Ishida R, Ichikawa K, Toma K, Arakawa T, Mitsubayashi K, Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry, ACS Sensors, 9, 12, 6741-6749, 2024.
7. Taguchi Y, Toma K, Iitani K, Arakawa T, Iwasaki Y, Mitsubayashi K, In Vitro Performance of a Long-Range Surface Plasmon Hydrogel Aptasensor for Continuous and Real-Time Vancomycin Measurement in Human Serum, ACS Applied Materials & Interfaces, 18, 22, 28162-28171, 2024.
8. Ichikawa K, Iitani K, Kawase G, Toma K, Arakawa T, Dao D, Mitsubayashi K, Mouthguard-Type Wearable Sensor for Monitoring Salivary Turbidity to Assess Oral Hygiene, Sensors 2024; 24; 5; 1436. (10.3390/s24051436)
9. Zhang, G., Maeno, Y., Iitani, K., Arakawa, T., Iwasaki, Y., Toma, K., Mitsubayashi, K. Enhanced sensitivity of a fluorometric biosensor for alcohol metabolites with an enzymatic cycling reaction. Sensors and Actuators B: Chemical, 401, 135031. 2024. https://doi.org/10.1016/j.snb.2023.135031
2023
1. Sato, M., Kamiyama, T., Iitani, K., Yano, K., Mitsubayashi, K., Arakawa, T., Wearable Biosensor Utilizing Chitosan Biopolymer for Uric Acid Monitoring. Journal of Robotics and Mechatronics, 35(5), 1131–1134, 2023. https://doi.org/10.20965/jrm.2023.p1131
2. Iitani, K., Mori, H., Ichikawa, K., Toma, K., Arakawa, T., Iwasaki, Y., Mitsubayashi, K., Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor, Sensors, 23(13), 5857, 2023. https://doi.org/10.3390/s23135857
3. Matsumoto, H., Tomoto, K., Kawase, G., Iitani, K., Toma, K., Arakawa, T., Mitsubayashi, K., Moriyama, K., Real-Time Continuous Monitoring of Oral Soft Tissue Pressure with a Wireless Mouthguard Device for Assessing Tongue Thrusting Habits, Sensors, 23(11), 2023. https://doi.org/10.3390/s23115027
4. Toma K., Satomura Y., Iitani K., Arakawa T., Mitsubayashi K.,Long-range surface plasmon aptasensor for label-free monitoring of vancomycin, Biosensors and Bioelectronics, 114959, 2023. https://doi.org/10.1016/j.bios.2022.114959
5. Iitani, K., Kishima, K., Kasuga, Y., Yokota, K., Nitta, H., Onchi, K., Kawase, G., Umezawa, K., Toma, K., Arakawa, T., Dao, D. V., Mitsubayashi, K, Wireless Unconstrained Monitoring of Intra-oral Temperature Using Thermistor and Telemeter Sealed in Mouthguard, Sensors and Materials, 35(4), 1315-1325, 2023. https://doi.org/10.18494/SAM4218
2022
1. Arakawa T, Ishikawa R, Iitani K, Toma K, Iwasaki Y, Mitsubayashi K, Headset bio-sniffer with wireless CMOS camera for percutaneous ethanol vapor from the ear canal. Biosensors and Bioelectronics: X, 11, 100169, 2022.
2. Iitani K, Nakaya M, Tomono T, Toma K, Arakawa T, Tsuchido Y, Mitsubayashi K, Takeda N, Enzyme-embedded electrospun fiber sensor of hydrophilic polymer for fluorometric ethanol gas imaging in vapor phase, Biosensors and Bioelecronics, 114453, 2022.
3. Gessei T, Monkawa A, Arakawa T, Mitsubayashi K, Blood sorbitol measurement in diabetic rats treated with an aldose reductase inhibitor using an improved fiber-optic sorbitol biosensor. Talanta, 248, 123595, 2022.
4. Toma K, Oishi K, Iitani K, Arakawa T, Mitsubayashi K, Surface plasmon-enhanced fluorescence immunosensor for monitoring cardiac troponin I. Sensors and Actuators: B Chemical, 368, 132132, 2022.
5. Arakawa T, Kurihara K, Mori D, Toma K, Yano K, Mitsubayashi K, Glucose-driven Monolithic Polydimethylsiloxane Decompression Unit for Drug Release Device Using Plasma-activated Bonding Technology. Sensors and Materials 34, 1501–1514, 2022.
2021
1. Arakawa T, Mizukoshi N, Iitani K, Toma K, Mitsubayashi K, A Bio-Fluorometric Acetone Gas Imaging System for the Dynamic Analysis of Lipid Metabolism in Human Breath. Chemosensors, 9; 258, 2021.
2. Toma K, Suzuki S, Arakawa T, Iwasaki Y, Mitsubayashi K, External ears for non-invasive and stable monitoring of volatile organic compounds in human blood. Scientific Reports, 11, 10415, 2021.
3. Toma K, Iwasaki K, Arakawa T, Iwasaki Y, Mitsubayashi K, Sensitive and selective methanol biosensor using two-enzyme cascade reaction and fluorometry for non-invasive assessment of intestinal bacteria activity. Biosensors and Bioelectronics, 181, 113136, 2021.
4. Toma K, Tsujii M, Arakawa T, Iwasaki Y, Mitsubayashi K. Dual-target gas-phase biosensor (bio-sniffer) for assessment of lipid metabolism from breath acetone and isopropanol, Sensors and Actuators B: Chemical, 129260, 2021.
5. Toma K, Kishikawa C, Arakawa T, Mitsubayashi K, Reusable surface plasmon resonance immunosensor for temporal information of protein biomarkers. Sensors and Materials, 33: 251-260, 2021.
2020
1. Arakawa T, Tomoto K, Nitta H, Toma K, Takeuchi S, Sekita T, Minakuchi S, Mitsubayashi K. A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement, Analytical Chemistry (IF: 6.785), 92, 18, 12201–12207, 2020.
2. Arakawa T, Aota T, Iitani K, Toma K, Mitsubayashi K. Skin ethanol gas measurement system with a biochemical gas sensor and gas concentrator toward monitoring of blood volatile compounds, Talanta (IF: 5.339), 219, 121187, 2020.
3. Chien PJ, Suzuki T, Ye M, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K. Ultra-sensitive isopropanol biochemical gas sensor (Bio-sniffer) for monitoring of human volatiles, Sensors (IF: 3.275), 20, 23, 2020.
4. Iitani K, Naisierding M, Toma K, Arakawa T, Mitsubayashi K. Evaluation for regional difference of skin-gas ethanol and sweat rate using alcohol dehydrogenase-mediated fluorometric gas-imaging system (sniff-cam). Analyst (IF: 3.978), 145(8), 2915–24, 2020.
5. Mizukoshi K, Arakawa T, Mitsubayashi K. Convenience biosensing approach of lactic acid in stratum corneum for skin care assessment. Skin Research and Technology (IF: 2.079), Nov. 1–10, 2020.
6. Iitani K, Toma K, Arakawa T, Mitsubayashi K. Transcutaneous Blood VOC Imaging System (Skin-Gas Cam) with Real-Time Bio-Fluorometric Device on Rounded Skin Surface. ACS Sensors (IF: 7.333), 5(2):338–45, 2020.
2019
1. Arakawa T, Suzuki T, Tsujii M, Chien P-J, Ye M, Toma K, Iwasaki Y, Mitsubayashi K, Real-time monitoring of skin ethanol gas by a high-sensitivity gas phase biosensor (bio-sniffer) for the non-invasive evaluation of volatile blood compounds. Biosensors and Bioelectronics (IF: 10.257), 129: 245-253, 2019.
2 .Iitani K, Toma K, Arakawa T, Mitsubayashi K, Ultrasensitive Sniff-Cam for biofluorometric-imaging of breath ethanol caused by metabolism of intestinal flora. Analytical Chemistry (IF: 6.785), 91, 9458-9465, 2019.
3 .Toma K, Oishi K, Kato M, Kurata K, Yoshimura N, Arakawa T, Yatsuda H, Kanamori K, Precipitate-enhanced SAW immunosensor for sensitive monitoring of mite allergens. Sensors and Actuators B: Chemical (IF: 7.100), 296: 126579, 2019.
4 .Toma K, Oishi K, Yoshimura N, Arakawa T, Yatsuda H, Mitsubayashi K, Repeated immunosensing by a dithiobis (succinimidyl propionate)-modified SAW device. Talanta (IF: 5.339), 203: 274-279, 2019.
5. Iitani K, Hayakawa Y, Toma K, Arakawa T, Mitsubayashi K, Switchable sniff-cam (gas-imaging system) based on redox reactions of alcohol dehydrogenase for ethanol and acetaldehyde in exhaled breath. Talanta (IF: 5.339), 197: 249-256, 2019.
6. Toda K, Mizutani K, Minami I, Ye M, Arakawa T, Mitsubayashi K, Ogawa Y, Araki K, Shinada K, Effects of oral health instructions on glycemic control and oral health status of periodontitis patients with type 2 diabetes mellitus: A preliminary observation, Journal of Dental Sciences (IF: 1.034), 14(2), 171-177, 2019.
2018
1. Arakawa T, Xie R, Seshima F, Toma K, Mitsubayashi K, Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices, Biosensors and Bioelectronics (IF: 10.257), 103, 171-175, 2018.
2. Toma K, Tomoto K, Yokota K, Yasuda N, Ishikawa T, Arakawa T, Mitsubayashi K, Mouthguard controller for unconstrained controlling of external devices. Sensors and Materials (IF: 0.599), 30: 3053-3060, 2018.
3 .Iitani K, Sato T, Naisierding M, Hayakawa Y, Toma K, Arakawa T, Mitsubayashi K, Fluorometric sniff-cam (gas-imaging system) utilizing alcohol dehydrogenase for imaging concentration distribution of acetaldehyde in breath and transdermal vapor after drinking, Analytical Chemistry (IF: 6.785), 90, 2678-2685, 2018.
4 .Iitani K, Chien P-J, Suzuki T, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K, Fiber-optic bio-sniffer (biochemical gas sensor) using ADH reverse reaction for exhaled acetaldehyde, ACS Sensors (IF: 7.333), 3, 2, 425-431, 2018.
2017
1 .Arakawa T, Sato T, Iitani K, Toma K, Mitsubayashi K. Fluorometric Bio-sniffer Camera “Sniff-cam” for Direct Imaging of Gaseous Ethanol in Breath and Transdermal Vapor, Analytical Chemistry (IF: 6.785), 89, 4495−4501, 2017.
2 .Chien PJ, Suzuki T, Tsujii M, Ming Y, Minami I, Toda K, Otsuka H, Toma K, Arakawa T, Araki K, Iwasaki Y, Shinada K, Ogawa Y, Mitsubayashi K, Biochemical gas sensors (biosniffers) using forward and reverse reactions of secondary alcohol dehydrogenase for breath isopropanol and acetone as potential volatile biomarkers of diabetes mellitus, Analytical Chemistry (IF: 6.785), 89, 12261–12268, 2017.
3 .Toma K, Harashima Y, Yoshimura N, Arakawa T, Yatsuda H, Kanamori K, Mitsubayashi K, Semicontinuous measurement of mite allergen (Der f 2) using a surface acoustic wave immunosensor under moderate pH for long sensor lifetime, Sensors and Materials (IF: 0.599), 29, 1679-1687, 2017.
4 .Iitani K, Sato T, Munire N, Hayakawa Y, Toma K, Arakawa T, Mitsubayashi K, Fluorometric gas-imaging system (sniff-cam), using the extinction of NADH with an ADH reverse reaction, for acetaldehyde in the gas phase, Analyst (IF: 3.978), 142, 3830–3836, 2017.
5 .Ye M, Arakawa T, PJ Chien, Suzuki T, Toma K, Mitsubayashi K, Acetone biosensor based on fluorometry of reduced nicotinamide adenine dinucleotide consumption in reversible reaction by secondary alcohol dehydrogenase, IEEE Sensors (IF: 3.073), 17, 5419–5425, 2017.
6 .Iitani K, Chien P-J, Suzuki T, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K, Improved sensitivity of acetaldehyde biosensor by detecting ADH reverse reaction-mediated NADH fluoro-quenching for wine evaluation, ACS Sensors (IF: 7.333), 2, 940–946, 2017.
7 .Toma K, Miki D, Kishikawa C, Yoshimura N, Arakawa T, Yatsuda H, Mitsubayashi K, A gold nanoparticle-assisted sensitive SAW (surface acoustic wave) immunosensor with a regeneratable surface for monitoring of dust mite allergens, Sensors and Actuators B: Chemical (IF: 7.100), 249, 685-690, 2017.
8 .Toma K, Horibe M, Kishikawa C, Yoshimura N, Arakawa T, Yatsuda H, Shimomura H, Mitsubayashi K, Rapid and repetitive immunoassay with a surface acoustic wave device for monitoring of dust mite allergens, Sensors and Actuators: B. Chemical (IF: 7.100), 248, 924–929, 2017.
9 .Chien PJ, Suzuki T, Tsuji M, Ye M, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K, Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker, Biosensors and Bioelectronics (IF: 10.257), 91, 341–346, 2017.
Takahiro Arakawa, Ph. D.
Google Scholar
https://scholar.google.co.jp/citations?user=uVY8q7IAAAAJ&hl=ja
2007-2008 Research Assistant, Waseda University
2008-2009 Postdoctoral Research Fellow JSPS, The University of Tokyo
2009-2014 Assistant Professor, Tokyo Medical and Dental University
2014-2020 Junior Associate Professor, Tokyo Medical and Dental University
2017-2018 Visiting Researcher, University of California, Los Angeles
2020-2024 Associate Professor, Tokyo University of Technology
School of Engineering, Department of Electric and Electronic Engineering
Graduate School of Engineering
2025-Now Professor, Tokyo University of Technology
School of Engineering, Department of Electric and Electronic Engineering
Graduate School of Engineering
Senior Visiting Research Fellow, Organization for Research Initiatives, Waseda University
Part-time Lecturer, Graduate School of Engineering, The University of Tokyo
Part-time Lecturer, Laboratory forBiomaterials Engineering, Institute of Science Tokyo
September 2025 — Professor Arakawa has been selected for inclusion in the updated “Database of Scientists Based on Standardized Citation Indicators,” released jointly by Stanford University and Elsevier on September 19, 2025. This comprehensive list identifies the top 2% of scientists worldwide across all disciplines, based on rigorous citation metrics and standardized evaluation criteria.
July 2025 — Professor Arakawa delivered an invited lecture at The 2nd International Conference on AI Sensors and Transducers and was honored with the Best Scientist Award in recognition of his outstanding contributions.