Chen, X. M., Sharma, A., & Liu, H. (2023). The impact of climate change on environmental sustainability and human mortality. Environments, 10(10), 165.
Gagnon, J. S. (2022). Significance of a 1°C increase in global temperature. European Journal of Physics, 43(6), 065101.
Jones, M. W., et al. (2020). Climate change increases the risk of wildfires.
Kumar, R., Pippal, P. S., Kumar, R., et al. (2025). Forest fire consequences under the influence of changing climate: A systematic review with bibliometric analysis in the context of sustainable development goals. Discover Sustainability, 6, 541.
National Interagency Fire Center (2024). Wildland fire summary and statistics annual report 2024.
CAL FIRE (2025). Statistics. California Department of Forestry and Fire Protection.
Samborska, V., & Ritchie, H. (2024). Wildfires. OurWorldinData.org.
Makumbura, R. K., Dissanayake, P., Gunathilake, M. B., et al. (2024). Spatial mapping and analysis of forest fire risk areas in Sri Lanka – understanding environmental significance. Case Studies in Chemical and Environmental Engineering, 9, 100680.
Shadrin, D., Illarionova, S., Gubanov, F., et al. (2024). Wildfire spreading prediction using multimodal data and deep neural network approach. Scientific Reports, 14, 2606.
Zakari, R. Y., Malik, O. A., & Ong, W.-H. (2025). Enhanced wildfire spread prediction using multimodal satellite imagery and deep learning (APAU-Net). [Journal details pending publication]
Bhowmik, R., Jung, Y., Aguilera, J., Prunicki, M., & Nadeau, K. (2023). A multi-modal wildfire prediction and early-warning system based on a novel machine learning framework. Journal of Environmental Management, 341, 117908.
Chen, Q., & Li, S. (2025). A real-time multimodal transformer neural network-powered wildfire forecasting system. arXiv preprint, arXiv:2503.05971.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770-778.
Sainath, T. N., Vinyals, O., Senior, A., & Sak, H. (2015). Convolutional, long short-term memory, fully connected deep neural networks. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4580-4584.
Van Wagner, C. E. (1987). Development and structure of the Canadian Forest Fire Weather Index System. Forestry Technical Report 35, Canadian Forest Service, Petawawa National Forestry Institute, Chalk River, ON.
Kondylatos, S., Prapas, I., Ronco, M., et al. (2022). Wildfire danger prediction and understanding with deep learning. Geophysical Research Letters, 49(17), e2022GL099368.
Palanca, J., et al. (2025). SPADE – Smart Python Agent Development Environment. Python library, version 4.0.3, PyPI.
PyMAS Team (2012). PyMAS – Python Multi-Agent System. Python library, version 0.1dev, PyPI.
Hunger, M., Bratanic, T., De Jong, N., Senechal, M., et al. (2025). LLM Knowledge Graph Builder. Neo4j Labs.
Krech, D., Grimnes, G., Hees, J., Car, N. J., & RDFLib Team (2025). RDFLib – A Python library for working with RDF. Python library, version 7.1.4, PyPI.
Mañas, O., Krojer, B., & Agrawal, A. (2024). Improving automatic VQA evaluation using large language models. arXiv preprint, arXiv:2310.02567v2.
Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A method for automatic evaluation of machine translation. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), 311-318.
Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). BERTScore: Evaluating text generation with BERT. arXiv preprint, arXiv:1904.09675.
Indrianto, I. (2023). Performance testing on web information system using Apache JMeter and BlazeMeter. Jurnal Ilmiah Ilmu Terapan Universitas Jambi, 7, 138-149.
Perera, I., Meedeniya, D., Benerjee, I., & Choudhury, J. (2013). Educating users for disaster management: An exploratory study on using immersive training for disaster management. IEEE International Conference on MOOC, Innovation and Technology in Education (MITE), 245-250.
Meedeniya, D., Ariyarathne, I., Bandara, M., Jayasundara, R., & Perera, C. (2023). A survey on deep learning-based forest environment sound classification at the edge. ACM Computing Surveys, 56, 66:1-36.
National Interagency Fire Center (NIFC) - Official US wildfire statistics
CAL FIRE - California Department of Forestry and Fire Protection
Canadian Forest Service - Fire weather index system documentation
Our World in Data - Climate and environmental statistics
UCI Machine Learning Repository - Standardized datasets for research
Kaggle - Community-driven datasets and competitions