Google Scholar might be more up to date
D. Appelö and S. Wang, An Energy Based Discontinuous Galerkin Method for Coupled Elasto-Acoustic Wave Equations in Second Order Form. Accepted, International Journal for Numerical Methods in Engineering 2019, see also arXiv preprint.
M. Motamed and D. Appelö, Wasserstein metric-driven Bayesian inversion with application to wave propagation problems. Accepted for publication International Journal for Uncertainty Quantification, 2019 see also arXiv preprint.
D. Appelö and T. Hagstrom, An energy-based discontinuous Galerkin discretization of the elastic wave equation in second order form. CMAME, Vol. 338, p 362-391, 2018. Link,
D. Appelö, T. Hagstrom and A. Vargas, Hermite Methods for the Scalar Wave Equation, SIAM J. Sci. Comput. Accepted 2018, preprint
M. Motamed and D. Appelö, A multi-order discontinuous Galerkin Monte Carlo method for hyperbolic problems with stochastic parameters. SIAM J. Numer. Anal., 56(1), 448–468, 2018. Link
A. Kornelus and D. Appelö, Flux-conservative Hermite methods for simulation of nonlinear conservation laws. Journal of Scientific Computing, Volume 76, Issue 1, pp 24–47, 2018. Link
K. A. Heinemann, O. Beznosov, J. A. Ellison, D. P. Barber and Daniel Appelö, A PSEUDOSPECTRAL METHOD FOR SOLVING THE BLOCH EQUATIONS OF THE POLARIZATION DENSITY IN e− STORAGE RINGS, 9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada, 2018, Link.
D. Appelö, G. Kreiss, and S. Wang, An Explicit Hermite-Taylor Method for the Schrödinger Equation, Communications in Computational Physics, Volume 21, Issue 5 May 2017 , pp. 1207-1230. pdf
A. Kornelus and D. Appelö, On the scaling of entropy viscosity in high order methods. Springer Lecture Notes in Computational Science and Engineering, 2016. pdf
D. Appelö, T. Hagstrom, A. Kornelus, Sobolev-dG a class of dG methods with tame CFL numbers. Extended abstract Waves 2017. pdf
D. Appelö and S. Wang, An energy based discontinuous Galerkin method for acoustic-elastic waves. Extended abstract Waves 2017. pdf
D. Appelö, T. Hagstrom and A. Semenova An Energy Based Discontinuous Galerkin Method for Hamiltonian Systems. Extended abstract Waves 2017. pdf
D. Appelö and T. Hagstrom, A new discontinuous Galerkin formulation for wave equations in second order form. Siam Journal On Numerical Analysis, 53(6):2705–2765, 2015. pdf
T. Hagstrom and D. Appelö, Solving PDEs with Hermite Interpolation, Springer Lecture Notes in Computational Science and Engineering 2015. pdf
T. Colonius, A. Sinha, D. Rodriguez, A. Towne, J. Liu, G.A. Brès, D. Appelö and T. Hagstrom, Simulation and Modeling of Turbulent Jet Noise, J. Fröhlich et al. (eds.), Direct and Large-Eddy Simulation IX, ERCOFTAC Series 20. pdf
Xi (Ronald) Chen, D. Appelö and Thomas Hagstrom, A Hybrid Hermite - Discontinuous Galerkin Method for Hyperbolic Systems with Application to Maxwell’s Equations, J. Comp. Phys., 2013. pdf
D. Appelö and N. A. Petersson, A fourth-order accurate embedded boundary method for the wave equation, SIAM Journal on Scientific Computing, 34(6):2982–3008, 2012. pdf
D. Appelö, J. W. Banks, W. D. Henshaw, and D. W. Schwendeman. Numerical methods for solid mechanics on overlapping grids: Linear elasticity. J. of Comp. Phys., 231(18):6012–6050, 2012. pdf
C. Y. Jang, D. Appelö, T. Colonius, T. Hagstrom. An Analysis of Dispersion and Dissipation Properties of Hermite Methods and its Application to Direct Numerical Simulation of Jet Noise. 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 2012. pdf
T. Hagstrom, D. Appelö, T. Colonius, M. Inkman, and C. Y. Jang. Simulation of compressible flows using Hermite methods. The Journal of the Acoustical Society of America, 131(4):3429–3429, 2012. pdf
D Appelö and T. Hagstrom. On Advection by Hermite Methods. Paciffic Journal Of Applied Mathematics, Vol. 4 Issue 2, 2011. pdf
D Appelö, M. Inkman, T. Hagstrom and T. Colonius. Hermite Methods for Aeroacoustics: Recent Progress. AIAA-2011-2757, 17th AIAA/CEAS Aeroacoustics Conference 2011. pdf
T. Hagstrom, D. Appelö and C. Y. Jang. Hermite Methods for hyperbolic-parabolic systems. extended abstract Waves2011, Vancouver, Canada 2011. pdf
C.L. Ting, D. Appelö, and Z.G. Wang. Minimum energy path to membrane pore formation and rupture. Physical Review Letters, 106(16):168101, 2011. pdf
D. Appelö, T. Colonius, T. Hagstrom, and M. Inkman. Development of arbitrary-order hermite methods for simulation and analysis of turbulent jet noise. Procedia IUTAM, 1:19–27, 2010. pdf
A. Samanta, D. Appelö, T. Colonius, J. Nott and J. Hall, Computational Modeling and Experiments of Natural Convection for a Titan Montgolfiere, AIAA Journal 2. pdf
T. Colonius, D. Appelö, J. Nott and J. Hall, Computational Modeling and Experiments of Natural Convection for a Titan Montgolfiere, AIAA Balloon Systems Conference, AIAA-2009-2806, Seattle 2009. pdf
D. Appelö and N. A. Petersson, A compact fourth-order-accurate embedded boundary method for the wave equation, extended abstract Waves2009, Pau, France. pdf
D. Appelö and T. Colonius, A high order super-grid-scale absorbing layer and its application to linear hyperbolic systems, Journal of Computational Physics, 228 (11), 4200-4217, 2009. pdf
D. Appelö and T. Hagstrom, A general perfectly matched layer model for hyperbolic-parabolic systems, SIAM Journal on Scientific Computing, 31 (5), 3301-3323, 2009. pdf
D. Appelö and N. A. Petersson, A stable finite difference method for the elastic wave equation on complex geometries with free surfaces, Communications in Computational Physics, Vol. 5, 84-107, 2009. pdf
V. Eliasson, W. D. Henshaw and D. Appelö, On cylindrically converging shock waves shaped by obstacles, Physica D: Nonlinear Phenomena, Vol. 237, 2203-2209, 2008. pdf
T. Hagstrom and D. Appelö, Automatic Symmetrization and Energy Estimates Using Local Operators for Partial Differential Equations Comm. PDE, Volume 32 Issue 7, 1129 pdf
D. Appelö, S. Nilsson, A. N. Petersson and B. Sjogreen, A stable finite difference method for the elastic wave equation on complex domains with free surface boundary conditions, Proceedings of Waves 2007, Reading, UK July 23-27, 2007 pdf
T. Hagstrom and D. Appelö, Experiments with Hermite Methods for Simulating Compressible Flows: Runge-Kutta Time-Stepping and Absorbing Layers, AIAA-2007-3505. pdf
D. Appelö and G. Kreiss, Application of a perfectly matched layer to the nonlinear wave equation, Wave Motion Vol. 44, 2007, pp531-548. pdf
D. Appelö, T. Hagstrom and G. Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness and stability, SIAM J. Appl. Math. 67, 1 (2006). pdf
D. Appelö and G. Kreiss, A New Absorbing Layer for Elastic Waves, Journal of Computational Physics 215 (2), pp642-660. pdf
D. Appelö, Absorbing Layers and Non-Reflecting Boundary Conditions for Wave Propagation Problems, Doctoral Thesis, Stockholm, Sweden, 2005. pdf
D. Appelö and T. Hagstrom, Construction of stable PMLs for general 2 X 2 symmetric hyperbolic systems, Proceedings of the HYP2004 conference, September 13-17 2004, Osaka, Japan. pdf
D. Appelö, Non-reflecting Boundary Conditions for Wave Propagation Problems, Licenciates Thesis, Royal Institute of Technology, Stockholm 2003. pdf
D. Appelö and G. Kreiss, Stabilized Local Non-reflecting Boundary Conditions for High Order Methods, TRITA-NA-0325, Royal Institute of Technology, Stockholm 2003. pdf
D. Appelö and G. Kreiss, Discretely Nonreflecting Boundary Conditions for Higher Order Centered Schemes for Wave Equations, Proceedings of the WAVES2003 conference, 30 June - 4 July 2003, Jyväskylä, Finland. pdf
D. Appelö and G. Kreiss, Evaluation of a well-posed Perfectly Matched Layer for Computational Acoustics,Proceedings of the HYP2002 conference, March 25-29 2002, Pasadena, USA. pdf
D. Appelö, PML-methods for the linearized Euler equations, Master's Thesis in Numerical Analysis, Royal Institute of Technology, Stockholm 2000. pdf
Miscellaneous
D. Appelö and T. Hagstrom, Numerical Experiments on the Perfect Matching of Perfectly Matched Layers, unpublished note, 2009.
K. Virta and D. Appelö, Formulae and Software for Particular Solutions to the Elastic Wave Equation in Curved Geometries, unpublished note, 2016. pdf