Publications

Research Papers

55. Hydrogen Evolving Mono-nuclear Manganese Complexes with Carefully Positioned Pyridine Base Ligands, F. A. Hussein, M. Joshi, Sandeep Kaur-Ghumaan* and M. Stein*, ChemCatChem, 2024, Accepted. https://doi.org/10.1002/cctc.202400450 


54. Design of Rigidified μ-(9-Fluorenethiolate){FeFe} Hydrogen Evolving Catalysts, T. Agarwal, M. Joshi, Ritu, M. Stein* and Sandeep Kaur-Ghumaan*, Organometallics, 2024,  xxxx, xxx-xxx (Special issue: Experimental Studies of Reaction Mechanisms in Organometallic Chemistry and Catalysis). doi.org/10.1021/acs.organomet.4c00036


53. Celebrating 100 Years of University of Delhi (1922–2022), S. K Awasthi*, P. Biswas*, B. K. Singh*, S. Deka* and Sandeep Kaur‐Ghumaan*, ChemistrySelect, 2023, 8(46), e202303354. doi.org/10.1002/slct.202303354 


52. Mono-nuclear ruthenium catalyst for hydrogen evolution, V. Kaim, M. Joshi, M Stein and Sandeep Kaur-Ghumaan*, Int. J. Hydr. Energ., 2023, 48(79), 30718-30731. doi.org/10.1016/j.ijhydene.2023.04.135 


51. [FeFe] Hydrogenase: 2-Propanethiolato-Bridged {FeFe} Systems as Electrocatalysts for Hydrogen Production in Acetonitrile-Water, T. Agarwal and Sandeep Kaur-Ghumaan*, Eur. J. Inorg. Chem., 2023, 26(11), e202200623. (Invited article: Celebrating 100 years of University of Delhi). doi.org/10.1002/ejic.202200623 


50. Synthesis, characterization and electrochemical studies of bis(monothiolato) {FeFe} complexes [Fe2(µ-SC6H4-OMe-m)2(CO)5L] (L = CO, PCy3, PPh3), N. Kumar and Sandeep Kaur-Ghumaan*, ChemistrySelect, 2022, 7(44), e202203392 (Invited article: Celebrating 100 years of University of Delhi). doi.org/10.1002/slct.202203392 


49. Mononuclear manganese complexes as hydrogen evolving catalysts, V. Kaim, M. Joshi, M. Stein* and Sandeep Kaur-Ghumaan*, Front. Chem., 2022, 00, 1-13. doi.org/10.3389/fchem.2022.993085 


48. 2-Mercaptobenzimidazole ligand-based models of the [FeFe] hydrogenase: Synthesis, characterization and electrochemical studies, N. Kumar and Sandeep Kaur- Ghumaan*, J. Chem. Sci., 2022, 134(2), 53 (1-12). doi.org/10.1007/s12039-022-02027-3 

 

47. Barriers to full participation in the open science life cycle among early career researchers, N. J. Gownaris,* K. Vermeir, M.-I. Bittner, L. Gunawardena, Sandeep Kaur-Ghumaan, R. Lepenies, G. N. Ntsefong and I. S. Zakari, Data Science Journal, 2022, 21(2), 1-15. doi.org/10.5334/dsj-2022-002 


46. Mechanism of diiron hydrogenase complexes controlled by nature of bridging dithiolate ligand, M. Natarajan, N. Kumar, M. Joshi, M. Stein and Sandeep Kaur-Ghumaan*, ChemistryOpen, 2022, 11(1), e202100238. doi.org/10.1002/open.202100238 


45. Mononuclear Mn complexes featuring N,S-/N,N-donor and1,3,5-triaza-7-phosphaadamantane ligands: synthesis and electrocatalytic properties, V. Kaim and Sandeep Kaur-Ghumaan*, New J. Chemistry, 2021, 45(43), 20272-20279. doi.org/10.1039/D1NJ02104D 


44. Mitigating losses: how scientific organizations can help address the impact of the COVID-19 pandemic on early-career researchers, S. López-Vergès, B. Urbani, D. F. Rivas, Sandeep Kaur-Ghumaan, A. K. Coussens, F. Moronta-Barrios, S. Bhattarai, L. Niamir, V. Siciliano, A. Molnar, A. Weltman, M. Dhimal, S. S. Arya, K. J. Cloete, A. Taj Awan, S. Kohler, C. S. Sharma, C. R. Rojas, Y. Shimpuku, J. Ganle, M. M. Matin, J. G. Nzweundji, A. Badre and P. Carmona-Mora*, Humanities and Social Sciences Communications, 2021, 8, 284. doi.org/10.1057/s41599-021-00944-1 


43. A Homobivalent SPECT Radioligand - Serinol Appended Methoxyphenyl Piperazine Derivative for Serotonin Receptor Imaging, S. Rangaswamy, M. Saklani, R. Kumar, R. Mathur, A. Kaul, A. K. Tiwari, Sandeep Kaur-Ghumaan, A. K. Mishra and R. Varshney, ChemistrySelect, 2021, 6(23), 5670-5677. doi.org/10.1002/slct.202100549 

 

42. Switching Site - Reactivity in Hydrogenase Model Systems by Introducing a Pendant Amine Ligand, I. K. Pandey, T. Agarwal, S. M. Mobin, M. Stein* and Sandeep Kaur-Ghumaan*, ACS Omega, 2021, 6(6), 4192-4203. doi.org/10.1021/acsomega.0c04901 

41. Macrocyclic butterfly iron cluster complexes: electrochemical investigations, T. Agarwal and Sandeep Kaur-Ghumaan*, J. Chem. Sci., 2020, 132, 125. doi.org/10.1007/s12039-020-01830-0 

 

40. Mono-and dinuclear mimics of the [FeFe] hydrogenase enzyme featuring bis (monothiolato) and 1, 3, 5-triaza-phosphaadamantane ligands, T. Agarwal and Sandeep Kaur-Ghumaan*, Inorganica Chim. Acta, 2020, 504, 119442 (Special issue: Celebrating 60th birthday of Prof. G. K. Lahiri). doi.org/10.1016/j.ica.2020.119442 

 

39. Electrochemical aspects of restricted rhenium(I)-based supramolecular complexes with semi-rigid benzimidazolyl and rigid hydroxyquinone ligands, S. Yadav, M. Natarajan, M. Sathiyendiran* and Sandeep Kaur-Ghumaan*, J. Chem. Sci. 2020, 132, 1. doi.org/10.1007/s12039-019-1689-3

 

38. Structural and HER studies of diphosphine-monothiolate complexes [Fe2(CO)4(μ-naphthalene-2-thiolate)2(μ-dppe)] and [Fe2(CO)4(μ-naphthalene-2-thiolate)2(μ-DPEPhos)], H. Faujdar, A. Spannenberg and Sandeep Kaur-Ghumaan*, Inorganica Chim. Acta, 2020, 501, 119227. doi.org/10.1016/j.ica.2019.119227 

 

37. Manganese complexes: Hydrogen generation and oxidation, V. Kaim and Sandeep Kaur-Ghumaan*, Eur. J. Inorg. Chem., 2019, 5041-5051 (Special issue: Artificial Enzymes). doi.org/10.1002/ejic.201900988 

 

36. Nickel(II) PE1CE2P pincer complexes (E = O, S) for electrocatalytic proton reduction, Sandeep Kaur-Ghumaan*, P. Hasche, A. Spannenberg and T. Beweries*, Dalton Trans., 2019, 48, 16322-16329. doi.org/10.1039/C9DT03626A 

 

35. HER catalysed by iron complexes without a Fe2S2 core: A review, T. Agarwal and Sandeep Kaur-Ghumaan*, Coord. Chem. Rev., 2019, 397, 188-219. doi.org/10.1016/j.ccr.2019.06.019 

 

34. Dinuclear Manganese Carbonyl Complexes: Electrocatalytic Reduction of Protons to Dihydrogen, V. Kaim, M. Natarajan and Sandeep Kaur-Ghumaan*, ChemistrySelect, 2019, 4, 1789 -1794. doi.org/10.1002/slct.201803754 

 

33. A tetranuclear iron complex: substitution with triphenylphosphine ligand and investigation into electrocatalytic proton reduction, M. Natarajan, V. Kaim, N. Kumar and Sandeep Kaur-Ghumaan*, J. Chem. Sci. 2018, 130, 126 (Selected for cover page). doi.org/10.1007/s12039-018-1529-x 

 

32. Intramolecular stabilization of a catalytic [FeFe]-hydrogenase mimic investigated by experiment and theory, I. K. Pandey, M. Natarajan, H. Faujdar, F. Hussain, M.Stein* and Sandeep Kaur-Ghumaan*, Dalton Trans. 2018, 47, 4941-4949. doi.org/10.1039/C7DT04837H 

 

31. Study of polyaniline and functionalized ZnO composite film linked through a binding agent for efficient and stable electrochromic applications, M. Jamdegni, Sandeep Kaur-Ghumaan and A. Kaur, Electrochimica Acta 2017, 252, 578-588. doi.org/10.1016/j.electacta.2017.08.144 

 

30. M. Natarajan, Hemlata, S. M. Mobin, M. Stein and Sandeep Kaur-Ghumaan*, Mononuclear Iron Carbonyl Complex [Fe(mu-bdt)(CO)2(PTA)2] with bulky phosphine ligand: A model for the [FeFe] hydrogenase enzyme active site with an inverted redox potential, Dalton Trans. 2017, 46, 10050-10056. doi.org/10.1039/C7DT01994G 

 

29. M. Natarajan, I. K. Pandey and Sandeep Kaur-Ghumaan*, Synthesis and Electrocatalysis of Diiron Monothiolate Complexes: Small Molecule Mimics of the [FeFe] Hydrogenase Enzyme, ChemistrySelect 2017, 2, 1637-1644. doi.org/10.1002/slct.201700084 

 

28. S. Rangaswamy, R. Varshney, A. K. Tiwari, S. K. Sethi, B. S. H. Kumar, H. Ojha, Sandeep Kaur-Ghumaan and A. K. Mishra, Gd(III)-DO3A-SBMPP: An Effort to Develop the MRI Contrast Agent with Enhanced Relaxivity, ChemistrySelect 2016, 1, 6206-6211. doi.org/10.1002/slct.201600814 

 

27. Diiron complexes [Fe2(CO)5(mu-pdt/Mebdt)(L)] containing a chelating Diphosphine ligand L=(Oxydi-2,1-phenylene)bis(diphenylphosphine): Bioinspired [FeFe] hydrogenase model complexes, I. K. Pandey, M. Natarajan, Hemlata, F. Hussain and Sandeep Kaur-Ghumaan*, ChemitrySelect, 2016, 1, 5671-5678. doi.org/10.1002/slct.201601216 

26. Diiron benzenedithiolate complexes relevant to the [FeFe] hydrogenase active site, I. K. Pandey, S. M. Mobin, N. Diebel, B. Sarkar and Sandeep Kaur-Ghumaan*, Eur. J. Inorg. Chem. 2015, 2875-2882. doi.org/10.1002/ejic.201500345 

 

25. 1,1'-Bis(Diphenylphosphino)Ferrocene Substituted Diiron Complexes Related to the Active Site of [FeFe]-Hydrogenases: Synthesis, characterization and DFT studies, Sandeep Kaur-Ghumaan*, A. Sreenithya and R. B. Sunoj, J. Chem. Sci. 2015, 127, 557-563. doi.org/10.1007/s12039-015-0809-y 

 

24. Hydrogen generation: Aromatic dithiolate-bridged metal carbonyl complexes as hydrogenase catalytic site models, I. K. Pandey, M. Natarajan and Sandeep Kaur-Ghumaan*, J. Inorg. Biochem. 2015, 143, 88-110. doi.org/10.1016/j.jinorgbio.2014.11.006 

 

23. [NiFe]hydrogenases: How close do structural and functional mimics approach the active site?, Sandeep Kaur-Ghumaan* and M. Stein,* Dalton Trans. 2014, 43, 9392-9405. doi.org/10.1039/C4DT00539B 


22. Microbial hydrogen splitting in the presence of oxygen, M. Stein* and Sandeep Kaur-Ghumaan*, Biochem. Soc. Trans. 2013, 41, 1317-1324. doi.org/10.1042/BST20130033 

 

21. Effect of Cyanide Ligands on the Electronic Structure of [FeFe] Hydrogenase Active Site Model Complexes with an Azadithiolate Ligand, O. F. Erdem, M. Stein, Sandeep Kaur-Ghumaan, E. J. Reijerse, S. Ott and W. Lubitz, Chem. Eur. J. 2013, 19, 14566-14572. doi.org/10.1002/chem.201302467 

 

20. A model for the [FeFe] hydrogenase active site with a biologically relevant azadithiolate bridge: a spectroscopic and theoretical investigation, O. F. Erdem, L. Schwartz, M. Stein, A. Silakov, Sandeep Kaur-Ghumaan, P. Huang, S. Ott, E. J. Reijerse and W. Lubitz, Angew. Chem. Int. Ed. 2011, 50, 1439-1443. doi.org/10.1002/anie.201006244 

19. Catalytic Hydrogen Evolution from Mononuclear Ferrous Carbonyl Complexes as Minimal Functional Models of the [FeFe] Hydrogenase Active Site, Sandeep Kaur-Ghumaan, L. Schwartz, R. Lomoth, M. Stein and S. Ott, Angew. Chem. Int. Ed. 2010, 49, 8033-8036. doi.org/10.1002/anie.201002719 

 

18. Valence State Analysis via Spectroelectrochemistry in Differently Quinonoid Bridged Diruthenium Complexes [(acac)2Ru(mu-L)Ru(acac)2]n+ (n = +2, +1, 0, -1, -2), Sandeep Ghumaan, B. Sarkar, S. Maji, V. G. Puranik, J. Fiedler, F. A. Urbanos, R. Jimenez-Aparicio, W. Kaim and G. K. Lahiri, Chem. Eur. J. 2008, 14, 10816-10828. doi.org/10.1002/chem.200800976 

 

17. Multiple one-electron oxidation and reduction of trinuclear bis (2,4-pentanedionato)ruthenium complexes with substituted diquinoxalino[2,3-a:2′,3′-c]phenazine ligands, Sandeep Ghumaan, B. Sarkar, M. P. Patil, J. Fiedler, R. B. Sunoj, W. Kaim and G. K. Lahiri, Polyhedron 2007, 26, 3409-3418. doi.org/10.1016/j.poly.2007.03.030 

 

16. Ancillary ligand determination of the spin location in both oxidised and reduced forms of diruthenium complexes bridged by bis-bidentate 1,4-bis(2-phenolato)-1,4-diazabutadiene, S. Kar, B. Sarkar, Sandeep Ghumaan, M. Leboschka, J. Fiedler, W. Kaim and G. K. Lahiri, Dalton Trans. 2007, 1934-1938. doi.org/10.1039/B617468J 

 

15. Probing Mixed Valence in a New tppz-Bridged Diruthenium(III,II) Complex {(mu-tppz)[Ru(bik)Cl]2}3+ (tppz = 2,3,5,6-Tetrakis(2-pyridyl)pyrazine, bik = 2,2'-Bis(1-methylimidazolyl)ketone): EPR Silence, Intervalence Absorption, and nCO Line Broadening, M. Koley, B. Sarkar, Sandeep Ghumaan, E. Bulak, J. Fiedler, W. Kaim and G. K. Lahiri, Inorg. Chem. 2007, 46, 3736-3742. doi.org/10.1021/ic0700102 

 

14. Tuning intermetallic electronic coupling in polyruthenium systems via molecular architecture, Sandeep Ghumaan, and G. K. Lahiri, J. Chem. Sc. 2006, 118, 537-545. doi.org/10.1007/BF02703951 


13. 2,2/-dipyridylketone (dpk) as ancillary acceptor and reporter ligand in complexes [(dpk)(Cl)Ru(mu-tppz)Ru(Cl)(dpk)]n+ where tppz 2,3,5,6-tetrakis(2-pyridyl)pyrazine, Sandeep Ghumaan, B. Sarkar, N. Chanda, M. Sieger, J. Fiedler, W. Kaim and G. K. Lahiri, Inorg. Chem. 2006, 45, 7955-7961. doi.org/10.1021/ic060887l 

 

12. An Experimental and Density Functional Theory Approach Towards the Establishment of Preferential Metal or Ligand Based Electron Transfer Processes in Large Quinonoid Bridged Diruthenium Complexes [{(aap)2Ru}2(mu-BL2-)]n+, aap = 2-Arylazopyridine, Sandeep Ghumaan, S. Mukherjee, S. Kar, D. Roy, Shaikh M. Mobin, R. B. Sunoj and G. K. Lahiri, Eur. J. Inorg. Chem. 2006, 4426-4441. doi.org/10.1002/ejic.200600638 

 

11. 2,4,6-Tris(2-pyridyl)-1,3,5-triazine (tptz)-Derived [RuII(tptz)(acac)(CH3CN)]+ and Mixed- Valent [(acac)2RuIII{(mu-tptz-H+)-}RuII(acac)(CH3CN)]+, Sandeep Ghumaan, Sanjib Kar, Shaikh M. Mobin, B. Harish, Vedavati G. Puranik and G. K. Lahiri, Inorg. Chem. 2006, 45, 2413-2423. doi.org/10.1021/ic0514288 

 

10. A New Coordination Mode of the Photometric Reagent Glyoxalbis(2-hydroxyanil) (H2gbha): Bis-Bidentate Bridging by gbha2- in the Redox Series {(mu-gbha)[Ru(acac)2]2}n (n = -2, -1, 0, +1, +2), Including a Radical-Bridged Diruthenium(III) and a RuIII/RuIV Intermediate, S. Kar, B. Sarkar, Sandeep Ghumaan, D. Roy, F. A. Urbanos, J. Fiedler, R. B. Sunoj, R. Jimenez-Aparicio, W. Kaim and G. K. Lahiri, Inorg. Chem. 2005, 44, 8715-8722. doi.org/10.1021/ic050950r 

 

9. 2,5-Dioxido-1,4-benzoquinonediimine (H2L2-), a hydrogen-bonding noninnocent bridging ligand related to aminated topaquinone: Different oxidation state distributions in complexes [{(bpy)2Ru}2(mu-H2L)]n (n = 0 , +, 2+, 3+, 4+) and [{(acac)2Ru}2(mu-H2L)]m (m = 2-, -, 0, +, 2+), S. Kar, B. Sarkar, Sandeep Ghumaan, D. Janardanan, J. van Slageren, J. Fiedler, V. G. Puranik, R. B. Sunoj, W. Kaim and G. K. Lahiri, Chem. Eur. J. 2005, 11, 4901-4911. doi.org/10.1002/chem.200500202 

 

8. Sensitive Oxidation State Ambivalence in Unsymmetrical Three-Center (M/Q/M) Systems [(acac)2Ru(mu-Q)Ru(acac)2]n, Q = 1,10-Phenanthroline-5,6-dione or 1,10-Phenanthroline-5,6-diimine (n = +, 0, -, 2-), Sandeep Ghumaan, B. Sarkar, S. Patra, J. van Slageren, J. Fiedler, W. Kaim and G. K. Lahiri, Inorg. Chem. 2005, 44, 3210-3214. doi.org/10.1021/ic048309x 

 

7. 3,6-Bis(2'-pyridyl)pyridazine (L) and its deprotonated form (L-H+)- as ligands for {(acac)2Run+} or {(bpy)2Rum+}: investigation of mixed valency in [{(acac)2Ru}2(mu- L- H+)]0 and [{(bpy)2Ru}2(mu-L - H+)]4+ by spectroelectrochemistry and EPR, Sandeep Ghumaan, B. Sarkar, S. Patra, K. Parimal, J. van Slageren, J. Fiedler, W. Kaim, G. K. Lahiri, Dalton Trans. 2005, 706-712. doi.org/10.1039/B417530A 

 

6. Isomeric ruthenium terpyridine complexes [Ru(trpy)(L)Cl]n+ containing the unsymmetrically bidentate acceptor L = 3-amino-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine. Synthesis, structures, electrochemistry, spectroscopy and DFT calculations, S. Patra, B. Sarkar, Sandeep Ghumaan, M. P. Patil, S. M. Mobin, R. B. Sunoj, W. Kaim and G. K. Lahiri, Dalton Trans. 2005, 1188-1194. doi.org/10.1039/B500152H 

 

5. Tetrazine derived mononuclear RuII(acac)2(L) (1), [RuII(bpy)2(L)](ClO4)2 (2) and [RuII(bpy)(L)2](ClO4)2 (3) (L = 3-amino-6-(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine, acac = acetylacetonate, bpy = 2,2'-bipyridine): syntheses, structures, spectra and redox properties, A. Nayak, S. Patra, B. Sarkar, Sandeep Ghumaan, V. G. Puranik, W. Kaim and G. K. Lahiri, Polyhedron 2005, 24, 333-342. doi.org/10.1016/j.poly.2004.11.019 

 

4. Mixed valency in polyruthenium systems: Diverse effects of ancillary and bridging functionalities, Sandeep Ghumaan and G. K. Lahiri, Abstracts of Papers, 229th ACS National Meeting, San Diego, CA, United States, March 13-17, 2005, INOR-827.

 

3. Isovalent and Mixed-Valent Diruthenium Complexes [(acac)2RuII(mu-bpytz)RuII(acac)2]and [(acac)2RuII(mu-bpytz)RuIII(acac)2](ClO4) (acac = Acetylacetonate and bpytz = 3,6-Bis(3,5-dimethylpyrazolyl)-1,2,4,5-tetrazine): Synthesis, Spectroelectrochemical, and EPR Investigation, S. Patra, B. Sarkar, Sandeep Ghumaan, J. Fiedler, W. Kaim and G. K. Lahiri, Inorg. Chem. 2004, 43, 6108-6113. doi.org/10.1021/ic049346r 

 

2. The triruthenium complex [{(acac)2RuII}3(L)] containing a conjugated diquinoxaline[2,3-f:2',3'-h]phenazine (L) bridge and acetylacetonate (acac) as ancillary ligands. Synthesis, spectroelectrochemical and EPR investigation, S. Patra, B. Sarkar, Sandeep Ghumaan, J. Fiedler, W. Kaim and G. K. Lahiri, Dalton Trans. 2004, 754-758. doi.org/10.1039/B316007F 

 

1. {(mu-L)[RuII(acac)2]2}n, n = 2+, +, 0, -, 2-, with L = 3,3',4,4'-tetraimino-3,3',4,4'- tetrahydrobiphenyl. EPR-supported assignment of NIR absorptions for the paramagnetic intermediates, S. Patra, B. Sarkar, Sandeep Ghumaan, J. Fiedler, S. Zalis, W. Kaim and G. K. Lahiri, Dalton Trans. 2004, 750-753. doi.org/10.1039/B315927M 

Books / Book Chapters

1. T. Agarwal, V. Kaim, N. Kumar and Sandeep Kaur-Ghumaan*. 2021. Chapter 7: Hydrogenase biomimetics as catalysts for the hydrogen oxidation reaction (HOR), In the book: A Closer look at coordination complexes. Nova Science Publishers, USA. ISBN: 978-1-68507-199-8.

 

2. Sandeep Kaur-Ghumaan (Ed.). 2021. A Closer look at coordination complexes. Nova Science Publishers, USA. ISBN: 978-1-68507-199-8.

 

3. Sandeep Kaur-Ghumaan. 2020. Chapter10: My husband, son and I: The Three Musketeers, In the book: Motherhood in Science– How children change our academic careers: Experiences shared by the GYA Women in Science Working Group. Global Young Academy (GYA) publication.

 

4. Sandeep Kaur-Ghumaan*, A. Sakthivel, D. T. Masram and M. Sathiyendiran. 2017. Electronic and Magnetic Properties of Transition and Inner Transition Elements and Their Complexes. Nova Science Publishers, USA. ISBN:  978-1-53610-914-6.

Other Publications










LinkLinkLinkLinkLinkLink