Publications

  1. Dixon, A. R., & Vondra, I. (2022). Biting Innovations of Mosquito-Based Biomaterials and Medical Devices. Materials, 15(13), 4587.

  2. Dixon, A.R., Brooks, Z., Kim, K., Zhao, K., Goswami, T., Kim, S., Hussain, S.M. (2022). 3D printed transwell-integrated nose-on-chip model to evaluate effects of air flow-induced mechanical stresses on mucous secretion. Biomed Microdevices.

  3. Kühl, A., Dixon, A., Hali, M., Apawu, A.K., Muca, A., Sinan, M., Warila, J., Braun, R.D., Berkowitz, B.A. and Holt, A.G. (2019). Novel QUEST MRI in vivo measurement of noise-induced oxidative stress in the cochlea. Scientific reports, 9(1), 1-11.

  4. Dixon, A. R., Horst, E. N., Garcia, J. J., Ndjouyep-Yamaga, P. R., and Mehta, G. (2019). Morphometric and computational assessments to evaluate neuron survival and maturation within compartmentalized microfluidic devices: The influence of design variation on diffusion-driven nutrient transport. Neuroscience letters, 703, 58-67.

  5. Dixon, A.R., Jariwala, S. H., Bilis, Z., Loverde, J. R., Pasquina, P. F., and Alvarez, L. M. (2018). Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials, 186, 44-63.

  6. Apawu, A.K., Curley, S.M., Dixon, A.R., Hali, M., Sinan, M., Braun, R.D., Castracane, J., Cacace, A.T., Bergkvist, M. and Holt, A.G. (2018). MRI compatible MS2 nanoparticles designed to cross the blood–brain-barrier: providing a path towards tinnitus treatment. Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 1999-2008.

  7. Dixon, A.R., Ramirez, Y., Haengel, K., & Barald, K. F. (2018). A drop array culture for patterning adherent mouse embryonic stem cell‐derived neurospheres. Journal of tissue engineering and regenerative medicine, 12(1), e379-e383.

  8. Cacace, A. T., Apawu, A. K., Curley, S. M., Castracane, J., Bergkvist, M., Dixon, A. R., & Holt, A. G. (2018). Development of A “Theranostic Nano-Bullet” for Tinnitus: A Systems Neuroscience Approach for Receptor Targeting, Molecular Imaging, and Drug Delivery. Frontiers in Clinical Drug Research-CNS and Neurological Disorders, 6, 72.

  9. Holt, A.G., Martin, C.A., Muca, A., Dixon, A.R., and Bergkvist, M (2016). Chapter 6. Molecular-Based Measures for the Development of Treatment for Auditory System Disorders: Important Transformative Steps Towards the Treatment of Tinnitus. Scientific Foundations of Audiology: Perspectives from Physics, Biology, Modeling, and Medicine 6, 107.

  10. Dixon, A.R., Bathany, C., Tsuei, M., White, J., Barald, K. F., & Takayama, S. (2015). Recent developments in multiplexing techniques for immunohistochemistry. Expert review of molecular diagnostics, 15(9), 1171-1186.

  11. Dixon, A.R.& Philbert, M. A. (2015). Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: Using m-Dinitrobezene as a model neurotoxicant. Toxicology in Vitro, 29(3), 564-574.

  12. Dixon, A.R., Anthony, T., Ramirez, Y., & Barald, K. F. (2014, April). Neuronal differentiation of mouse embryonic stem cells using microfluidic spatial confinement of cell parts and soluble factors. In 2014 40th Annual Northeast Bioengineering Conference (NEBEC) (pp. 1-2). IEEE.

  13. Moraes, C., Kim, B. C., Zhu, X., Mills, K. L., Dixon, A. R., Thouless, M. D., & Takayama, S. (2014). Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patterns. Lab on a Chip, 14(13), 2191-2201.

  14. Dixon, A.R., Rajan, S., Kuo, C.H., Bersano, T., Wold, R., Futai, N., Takayama, S. and Mehta, G. (2014). Microfluidic device capable of medium recirculation for non-adherent cell culture. Biomicrofluidics, 8(1), 016503.

  15. Dixon, A.R., Moraes, C., Csete, M. E., Thouless, M. D., Philbert, M. A., & Takayama, S. (2014). One‐dimensional patterning of cells in silicone wells via compression‐induced fracture. Journal of Biomedical Materials Research Part A, 102(5), 1361-1369.

  16. Dixon, A. and Takayama (2010). Guided corona generates wettability patterns that selectively direct cell attachment inside closed microchannels. Biomedical microdevices, 12(5), 769-775.