Research
Working Paper
Revise and Resubmit at the Journal of Econometrics • September 2024
This paper studies debiased machine learning when nuisance parameters appear in indicator functions. An important example is maximized average welfare under optimal treatment assignment rules. For asymptotically valid inference for a parameter of interest, the current literature on debiased machine learning relies on Gateaux differentiability of the functions inside moment conditions, which does not hold when nuisance parameters appear in indicator functions. In this paper, we propose smoothing the indicator functions, and develop an asymptotic distribution theory for this class of models. The asymptotic behavior of the proposed estimator exhibits a trade-off between bias and variance due to smoothing. We study how a parameter which controls the degree of smoothing can be chosen optimally to minimize an upper bound of the asymptotic mean squared error. A Monte Carlo simulation supports the asymptotic distribution theory, and an empirical example illustrates the implementation of the method.