Alexis Ryan, Georgia R. Squyres, Matthew J. Holmes, Alex Bisson, Ethan C. Garner, and Niels Bradshaw. SpoIIE drives asymmetric cell division in B. subtilis by sequential modulation of the cytokinesis machinery. BioRxiv, June 10, 2025. doi: https://doi.org/10.1101/2025.06.09.658746
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-action kinase inhibitors influence p38α MAP kinase dephosphorylation. Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415150122. doi:10.1073/pnas.2415150122. Epub 2024 Dec 31. PMID: 39739785; PMCID: PMC11725910.
Syed AK, Baral R, Van Vlack ER, Gil-Marqués ML, Lenhart T, Hooper DC, Kahne D, Losick R, Bradshaw N. Biofilm formation by Staphylococcus aureus is triggered by a drop in the levels of a cyclic dinucleotide. Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2417323121. doi: 10.1073/pnas.2417323121. Epub 2024 Dec 16. PMID: 39680756; PMCID: PMC11670122.
Caban-Penix S, Ho K, Yang Z, Baral R, Bradshaw N. Docking interactions determine substrate specificity of members of a widespread family of protein phosphatases. J Biol Chem. 2024 Sep;300(9):107700. doi: 10.1016/j.jbc.2024.107700. Epub 2024 Aug 22. PMID: 39173947; PMCID: PMC11418112.
Baral, R., Ho, K., Kumar, R.P., Hopkins, J.B., Watkins, M.B., LaRussa, S., Caban-Penix, S., Calderone, L.A., and Bradshaw, N. (2024). A General Mechanism for the General Stress Response in Bacteria. bioRxiv, 2024. https://doi.org/10.1101/2024.02.16.580724.
Ho, K., and Bradshaw, N. (2021). A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis. Journal of Biological Chemistry 296, 100518. https://doi.org/10.1016/j.jbc.2021.100518.
Bradshaw, N., Levdikov, V.M., Zimanyi, C.M., Gaudet, R., Wilkinson, A.J., and Losick, R. (2017). A widespread family of serine/threonine protein phosphatases shares a common regulatory switch with proteasomal proteases. eLife 6, e26111. https://doi.org/10.7554/eLife.26111.
Bradshaw, N., and Losick, R. (2015). Asymmetric division triggers cell-specific gene expression through coupled capture and stabilization of a phosphatase. eLife 4, e08145. https://doi.org/10.7554/eLife.08145.
DeFrancesco, A.S., Masloboeva, N., Syed, A.K., DeLoughery, A., Bradshaw, N., Li, G.-W., Gilmore, M.S., Walker, S., and Losick, R. (2017). Genome-wide screen for genes involved in eDNA release during biofilm formation by Staphylococcus aureus. Proceedings of the National Academy of Sciences 114, E5969–E5978. https://doi.org/10.1073/pnas.1704544114.
Subramaniam, A.R., DeLoughery, A., Bradshaw, N., Chen, Y., O’Shea, E., Losick, R., and Chai, Y. (2013). A serine sensor for multicellularity in a bacterium. eLife 2, e01501. https://doi.org/10.7554/eLife.01501.
Bradshaw, N., Neher, S.B., Booth, D.S., and Walter, P. (2009). Signal Sequences Activate the Catalytic Switch of SRP RNA. Science 323, 127–130. https://doi.org/10.1126/science.1165971.
Neher, S.B., Bradshaw, N., Floor, S.N., Gross, J.D., and Walter, P. (2008). SRP RNA controls a conformational switch regulating the SRP–SRP receptor interaction. Nature Structural & Molecular Biology 15, 916–923. https://doi.org/10.1038/nsmb.1467.
Bradshaw, N., and Walter, P. (2007). The Signal Recognition Particle (SRP) RNA Links Conformational Changes in the SRP to Protein Targeting. MBoC 18, 2728–2734. https://doi.org/10.1091/mbc.e07-02-0117.