Barry Snider

Publications 1984 to 1986

The link will open a copy of the paper if you have a subscription to the journal. 

96.

Beal, R. B.; Dombroski, M. A.; Snider, B. B. “EtAlCl2-Catalyzed Reactions of Alkenes with Electrophilic Cyclopropanes. A New Cyclopentane Annelation Reaction” J. Org. Chem. 1986, 51, 4391-4399. http://dx.doi.org/10.1021/jo00373a010 

95.

Snider, B. B.; Burbaum, B. W. “Lewis Acid-Induced Asymmetric Prins Reactions of Chiral Acetals with Alkenes” Synth. Commun. 1986, 16, 1451-1460. http://dx.doi.org/10.1080/00397918608056395 

Me2AlCl induced reaction of acetal 1 with methylenecyclohexane at -78°C gives a 61% yield of 3 as a 7:3 mixture of diastereomers. 

94.

Snider, B. B.; Ron, E. “Lewis Acid Catalyzed Inter- and Intramolecular [2 + 2] Cycloadditions of Conjugated Allenic Esters to Alkenes” J. Org. Chem. 1986, 51, 3643-3652. http://dx.doi.org/10.1021/jo00369a017 

93.

Snider, B. B.; Goldman, B. E. “Sequential Ene Reactions. II. Synthesis of Bicyclic Adducts with Angular Methyl Groups. In situ Oppenauer Oxidation” Tetrahedron 1986, 42, 2951-2956. http://dx.doi.org/10.1016/S0040-4020(01)90585-X 

The sequential ene reaction annelation sequence has been shown to be applicable to 2- and 3- substituted methylenecycloalkanes. Methyl groups in the 2-position are transformed into angular methyl groups in decalin or indane derivatives. The chloromethylaluminum alkoxides produced in these reactions, i.e., 7 undergo an Oppenauer oxidation in situ in the presence of excess acrolein to give the corresponding ketone in good yield. Using these procedures, indenone 8a has been prepared from 4a in one pot in 60% yield. 

92.

Kulkarni, Y. S.; Snider, B. B. “A Synthetic Approach to the AB-Ring System of Forskolin” Org. Prep. Proc. Int. 1986, 18, 7-10. http://dx.doi.org/10.1080/00304948609356820 

91.

Snider, B. B. Ron, E. “The Mechanism of Lewis Acid Catalyzed Ene Reactions” J. Am. Chem Soc. 1985, 107, 8160-8164.  https://doi.org/10.1021/ja00312a058

Intermolecular kinetic isotope effects with 2,3-dimethyl-2-butene and methylenecyclohexane and intramolecular isotope effects with gem-, trans-, and cis-2,3-dimethyl-2-butene-d6 establish that the Lewis acid catalyzed ene reactions of methyl propiolate, formaldehyde, and diethyl oxomalonate proceed through a stepwise reaction with rate-determining formation of either (1) a three-membered ring intermediate lacking the geometrical rigidity of perepoxides and related intermediates, (2) a pair of rapidly equilibrating zwitterions, or (3) a π-complex between the ene component and enophile-Lewis acid complex. 

90.

Snider, B. B.; Hui, R. A. H. F. “Intramolecular [2 + 2] Cycloadditions of Alkoxyketenes and Alkoxyketeniminium Salts” Org. Chem. 1985, 50, 5167-5176. http://dx.doi.org/10.1021/jo00225a038 

89.

Snider, B. B.; Kulkarni, Y. S. “Simple Syntheses of (±)-β-Copaene, (±)-β-Ylangene and Lemnalol” Tetrahedron Lett. 1985, 26, 5675-5676. http://dx.doi.org/10.1016/S0040-4039(01)80916-3 

The ketone 1a, which we have prepared from geranylacetone in 38% yield by a four step sequence, has been converted to β-copaene and β-ylangene by a three step sequence. Oxidation of β-ylangene with SeO2 gives lemnalol in 76% yield. 

88.

Kulkarni, Y. S.; Burbaum, B. W.; Snider, B. B. “Intramolecular [2 + 2] Cycloaddition Reactions of Vinylketenes. Stereo- and Regiospecific Preparation of Vinylketenes from α,β-Unsaturated Acid Chlorides” Tetrahedron Lett. 1985, 26, 5619-5622. http://dx.doi.org/10.1016/S0040-4039(01)80902-3 

Treatment of α,β-unsaturated acid chlorides 5 and 6 with NEt3 in toluene at reflux generates, stereo- and regiospecifically, the vinylketene which undergoes a facile intramolecular [2 + 2] cycloaddition. 

87.

Snider, B. B.; Johnston, M. I. “Regioselectivity of the Halolactonization of γ,δ-Unsaturated Acids” Tetrahedron Lett. 1985, 26, 5497-5500. http://dx.doi.org/10.1016/S0040-4039(01)80869-8 

Bromolactonization of 4-hexenoic acids gives a greater percentage of δ-lactones than does iodolactonization. Substituents in the 3-position favor the formation of δ-lactones while substituents in the 6-position favor the formation of γ-lactones. 

86.

Snider, B. B.; Mohan, R.; Kates, S. A. “Manganese(III)-Based Oxidative Free-Radical Cyclization. Synthesis of (±)-Podocarpic Acid” J. Org. Chem. 1985, 50, 3659-3661. http://dx.doi.org/10.1021/jo00219a054 

85.

Kulkarni, Y. S.; Snider, B. B. “Intramolecular [2 + 2] Cycloadditions of Ketenes. 2. Synthesis of Chrysanthenone, β-Pinene, β-cis-Bergamotene, and β-trans-Bergamotene” J. Org. Chem. 1985, 50, 2809-2810. http://dx.doi.org/10.1021/jo00215a054 

84.

Faith, W. C.; Booth, C. A.; Foxman, B. M.; Snider, B. B. “An Approach to the Synthesis of Neplanocin” A. J. Org. Chem. 1985, 50, 1983-1985. http://dx.doi.org/10.1021/jo00211a041 

83.

Snider, B. B.; Hui, R. A. H. F.; Kulkarni, Y. S. “Intramolecular [2 + 2] Cycloadditions of Ketenes” J. Am. Chem. Soc. 1985, 107, 2194-2196. http://dx.doi.org/10.1021/ja00293a074 

82.

Cordova, R.; Snider, B. B. “A Synthetic Approach to Actinobolin. Total Synthesis of (±)-Ramulosin” Tetrahedron Lett. 1984, 25, 2945-2948. http://dx.doi.org/10.1016/S0040-4039(01)81333-2 

A biomimetic type synthesis of (±)-ramulosin from the acyclic precursor 9 is described. Mercury mediated oxidative cyclization and bromolactonization are shown to be useful for the construction of the actinobolin skeleton. 

81.

Jackson, A. C.; Goldman, B. E.; Snider, B. B. “Intramolecular and Intermolecular Lewis Acid Catalyzed Ene Reactions Using Ketones as Enophiles” J. Org. Chem. 1984, 49, 3988-3994. http://dx.doi.org/10.1021/jo00195a022 

80.

Conn, R. S. E.; Karras, M.; Snider, B. B. “Nickel-Catalyzed Addition of Methylmagnesium Bromide to Alkynylsilanes. Stereospecific Synthesis of Tetrasubstituted Alkenes” Isr. J. Chem. 1984, 24, 108-112. http://dx.doi.org/doi:10.1002/ijch.198400019 

Methylmagnesium bromide adds to trimethylsilyloctyne (1) in the presence of 10 mol% 1:0.67 nickel acetylacetonate-trimethylaluminum to give a 9:1 mixture of alkenyl Grignard reagents 2a and 3a. This mixture reacts with water, deuterium oxide, formaldehyde, acetaldehyde, carbon dioxide, iodine, vinyl bromide or allyl bromide to give the expected products. 

79.

Snider, B. B.; Cartaya-Marin, C. P. “Total Synthesis of (±)-Nitramine. Development of a Ketene Equivalent in the Ene Reaction” J. Org. Chem. 1984, 49, 1688-1691. http://dx.doi.org/10.1021/jo00184a003 

78.

Cartaya-Marin, C. P.; Jackson, A. C.; Snider, B. B. “Dimethylaluminum Chloride Catalyzed Ene Reactions of Aldehydes. 2. Stereochemistry and Scope” J. Org. Chem. 1984, 49, 2443-2446. http://dx.doi.org/10.1021/jo00187a029 

77.

Snider, B. B.; Faith, W. C. “Total Synthesis of (±)- and (-)-Ptilocaulin” J. Am. Chem. Soc. 1984, 106, 1443-1445. http://dx.doi.org/10.1021/ja00317a042 

76.

Snider, B. B.; Cartaya-Marin, C. P. “A New Method for Cyclopentanone Annulation” J. Org. Chem. 1984, 49, 153-157. http://dx.doi.org/10.1021/jo00175a032 

75.

Snider, B. B.; Phillips, G. B. “[1,2]-Intramolecular Ene Reactions”J. Org. Chem. 1984, 49, 183-185. http://dx.doi.org/10.1021/jo00175a043