The aim of this project will be to understand recent progress on the Tate conjectures. More details on the project will be provided here as they become available.
The organizers of this working group are Harrison Chen and Ravi Fernando. To participate in this working group, send an email to one of these organizers.
Both students and faculty are encouraged to participate in the working groups.
References:
The original Tate work for abelian varieties:
The Artin--Swinnerton-Dyer proof for elliptic K3s:
The Tate conjecture for K3 surfaces of finite height, as proven by Nygaard and Ogus:
Reference on supersingular K3 surfaces:
An earlier approach to finishing the Tate conjecture for K3s based on the Kuga-Satake construction:
From Zarhin’s trick to the Tate conjecture: