All publications can be found on PubMed.gov and are submitted to bioRxiv before submission to a journal.
(156) Aleksashin, N. A.; Langeberg, C. J.; Shelke, R. R.; Yin, T.; Cate, J. H. D. RNA elements required for the high efficiency of West Nile Virus-induced ribosomal frameshifting. Nucleic Acids Res. 2025, 53 (3). https://doi.org/10.1093/nar/gkae1248.
(155) Boyko, K. V.; Bernstein, R. A.; Kim, M.; Cate, J. H. D. Role of ribosomal protein bS1 in orthogonal mRNA start codon selection. Biochemistry 2025, 64 (3), 710-718. https://doi.org/10.1021/acs.biochem.4c00688.
(154) Kent, A. D.*; Robins, J. G.*; Knudson, I. J.; Vance, J. T.; Solivan, A. C.; Hamlish, N. X.; Fitzgerald, K. A.; Schepartz, A.; Miller, S. J.; Cate, J. H. D. Thioesters support efficent protein biosynthesis by the ribosome. ACS Cent. Sci. 2025. 11 (3), 404-412. https://doi.org/10.1021/acscentsci.4c01698.
(153) Mestre-Fos, S.; Ferguson, L.; Trinidad, M.; Ingolia, N. T.; Cate, J. H. D. eIF3 engages with 3′-UTR termini of highly translated mRNAs. eLife 2025, 13. https://doi.org/10.7554/eLife.102977.3.
(152) Shulgina, Y.*; Trinidad, M. I.*; Langeberg, C. J.*; Nisonoff, H.*; Chithrananda, S.*; Skopinstev, P.*; Nissley, A. J.*; Patel, J.; Boger, R. S.; Shi, H.; Yoon, P. H.; Doherty, E. E.; Pande, T.; Iyer, A. M.; Doudna, J. A.; Cate, J. H. D.* RNA language models predict mutations that improve RNA function. Nat. Commun. 2024, 15, 10627. https://doi.org/10.1038/s41467-024-54812-y.
(149) Volegoca, M. P.; Hermosillo, C.; Cate, J. H. D. The Helix-Loop-Helix Motif of Human EIF3A Regulates Translation of Proliferative Cellular mRNAs. PLoS ONE 2023, 18 (9): e0292080. https://doi.org/10.1371/journal.pone.0292080.
(148) Watson, Z. L.; Knudson, I. J.; Ward, F. R.; Miller, S. J.; Cate, J. H. D.; Schepartz, A.; Abramyan, A. M. Atomistic simulations of the Escherichia coli ribosome provide selection criteria for translationally active substrates. Nat. Chem. 2023 15, 913-921. https://doi.org/10.1038/s41557-023-01226-w.
(143) Poddar, S.; Tanaka, J.; Running, K. L. D.; Kariyawasam, G. K.; Faris, J. D.; Friesen, T. L.; Cho, M.-J.; Cate, J. H. D.; Staskawicz, B. Optimization of Highly Efficient Exogenous-DNA-Free Cas9-Ribonucleoprotein Mediated Gene Editing in Disease Susceptibility Loci in Wheat (Triticum Aestivum L.). Front. Plant Sci. 2023, 13, 1084700. https://doi.org/10.3389/fpls.2022.1084700.
(142) Tsuchida C.A.; Brandes N.; Bueno R.; Trinidad M.; Mazumder T.; Yu B.; Hwang B.; Chang C.; Liu J.; Sun Y.; Hopkins C.R.; Parker K.R.; Qi Y.; Hofman L.; Satpathy A.T.; Stadtmauer E.A.; Cate J.H.D.; Eyquem J.; Fraietta J.A.; June C.H.; Chang H.Y.; Ye C.J.; Doudna J.A. Mitigation of chromosome loss in clinical CRISPR- Cas9-engineered T cells. Cell. 2023, 186 (21), 4567-4582. https://doi.org/10.1016/j.cell.2023.08.041.
(141) Chen X.; Molenda O.; Brown C.T.; Toth C.R.A.; Guo S.; Luo F.; Howe J.; Nesbø C.L.; He C.; Montabana E.A.; Cate J.H.D.; Banfield J.F.; Edwards E.A. “Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture. Appl. Environ. Microbiol. 2023, 89 (5), e00025-23. https://doi.org/10.1128/aem.00025-23.
(140) Mendez, A. S.; Ly, M.; González-Sánchez, A. M.; Hartenian, E.; Ingolia, N. T.; Cate, J. H.; Glaunsinger, B. A. The N-Terminal Domain of SARS-CoV-2 Nsp1 Plays Key Roles in Suppression of Cellular Gene Expression and Preservation of Viral Gene Expression. Cell Rep. 2021, 37 (3), 109841. https://doi.org/10.1016/j.celrep.2021.109841.
(139) He, C.; Keren, R.; Whittaker, M. L.; Farag, I. F.; Doudna, J. A.; Cate, J. H. D.; Banfield, J. F. Genome-Resolved Metagenomics Reveals Site-Specific Diversity of Episymbiotic CPR Bacteria and DPANN Archaea in Groundwater Ecosystems. Nat. Microbiol. 2021, 6 (3), 354–365. https://doi.org/10.1038/s41564-020-00840-5.
(133) Al-Shayeb, B.; Sachdeva, R.; Chen, L.-X.; Ward, F.; Munk, P.; Devoto, A.; Castelle, C. J.; Olm, M. R.; Bouma-Gregson, K.; Amano, Y.; He, C.; Méheust, R.; Brooks, B.; Thomas, A.; Lavy, A.; Matheus-Carnevali, P.; Sun, C.; Goltsman, D. S. A.; Borton, M. A.; Sharrar, A.; Jaffe, A. L.; Nelson, T. C.; Kantor, R.; Keren, R.; Lane, K. R.; Farag, I. F.; Lei, S.; Finstad, K.; Amundson, R.; Anantharaman, K.; Zhou, J.; Probst, A. J.; Power, M. E.; Tringe, S. G.; Li, W.-J.; Wrighton, K.; Harrison, S.; Morowitz, M.; Relman, D. A.; Doudna, J. A.; Lehours, A.-C.; Warren, L.; Cate, J. H. D.; Santini, J. M.; Banfield, J. F. Clades of Huge Phages from across Earth’s Ecosystems. Nature 2020, 578 (7795), 425–431. https://doi.org/10.1038/s41586-020-2007-4.
(131) Travin, D. Y.; Watson, Z. L.; Metelev, M.; Ward, F. R.; Osterman, I. A.; Khven, I. M.; Khabibullina, N. F.; Serebryakova, M.; Mergaert, P.; Polikanov, Y. S.; Cate, J. H. D.; Severinov, K. Structure of Ribosome-Bound Azole-Modified Peptide Phazolicin Rationalizes Its Species-Specific Mode of Bacterial Translation Inhibition. Nat. Commun. 2019, 10 (1), 4563. https://doi.org/10.1038/s41467-019-12589-5.
(129) Liu, J.-J.; Zhang, G.-C.; Kwak, S.; Oh, E. J.; Yun, E. J.; Chomvong, K.; Cate, J. H. D.; Jin, Y.-S. Overcoming the Thermodynamic Equilibrium of an Isomerization Reaction through Oxidoreductive Reactions for Biotransformation. Nat. Commun. 2019, 10 (1), 1356. https://doi.org/10.1038/s41467-019-09288-6.
(128) Lilleorg, S.; Reier, K.; Pulk, A.; Liiv, A.; Tammsalu, T.; Peil, L.; Cate, J. H. D.; Remme, J. Bacterial Ribosome Heterogeneity: Changes in Ribosomal Protein Composition during Transition into Stationary Growth Phase. Biochimie 2019, 156, 169–180. https://doi.org/10.1016/j.biochi.2018.10.013.
(127) Liaud, N.; Horlbeck, M. A.; Gilbert, L. A.; Gjoni, K.; Weissman, J. S.; Cate, J. H. D. Cellular Response to Small Molecules That Selectively Stall Protein Synthesis by the Ribosome. PLoS Genet. 2019, 15 (3), e1008057. https://doi.org/10.1371/journal.pgen.1008057.
(126) Li, W.; Ward, F. R.; McClure, K. F.; Chang, S. T.-L.; Montabana, E.; Liras, S.; Dullea, R. G.; Cate, J. H. D. Structural Basis for Selective Stalling of Human Ribosome Nascent Chain Complexes by a Drug-like Molecule. Nat. Struct. Mol. Biol. 2019, 26 (6), 501–509. https://doi.org/10.1038/s41594-019-0236-8.
(125) Dao Duc, K.; Batra, S. S.; Bhattacharya, N.; Cate, J. H. D.; Song, Y. S. Differences in the Path to Exit the Ribosome across the Three Domains of Life. Nucleic Acids Res. 2019, 47 (8), 4198–4210. https://doi.org/10.1093/nar/gkz106.
(124) Arake de Tacca, L. M.; Pulos-Holmes, M. C.; Floor, S. N.; Cate, J. H. D. PTBP1 MRNA Isoforms and Regulation of Their Translation. RNA 2019, 25 (10), 1324–1336. https://doi.org/10.1261/rna.070193.118.
(123) Rosemond, S. N.; Hamadani, K. M.; Cate, J. H. D.; Marqusee, S. Modulating Long-Range Energetics via Helix Stabilization: A Case Study Using T4 Lysozyme. Protein Sci. 2018, 27 (12), 2084–2093. https://doi.org/10.1002/pro.3521.
(122) Londregan, A. T.; Wei, L.; Xiao, J.; Lintner, N. G.; Petersen, D.; Dullea, R. G.; McClure, K. F.; Bolt, M. W.; Warmus, J. S.; Coffey, S. B.; Limberakis, C.; Genovino, J.; Thuma, B. A.; Hesp, K. D.; Aspnes, G. E.; Reidich, B.; Salatto, C. T.; Chabot, J. R.; Cate, J. H. D.; Liras, S.; Piotrowski, D. W. Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Hit to Lead Optimization of Systemic Agents. J. Med. Chem. 2018, 61 (13), 5704–5718. https://doi.org/10.1021/acs.jmedchem.8b00650.
(121) Lintner, N. G.; McClure, K. F.; Petersen, D.; Londregan, A. T.; Piotrowski, D. W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P. M.; Maguire, B.; Geoghegan, K. F.; Huang, A.; Rolph, T.; Liras, S.; Doudna, J. A.; Dullea, R. G.; Cate, J. H. D. Correction: Selective Stalling of Human Translation through Small-Molecule Engagement of the Ribosome Nascent Chain. PLoS Biol. 2018, 16 (4), e1002628. https://doi.org/10.1371/journal.pbio.1002628.
(120) Lapinaite, A.; Doudna, J. A.; Cate, J. H. D. Programmable RNA Recognition Using a CRISPR-Associated Argonaute. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (13), 3368–3373. https://doi.org/10.1073/pnas.1717725115.
(119) Kim, H.; Oh, E. J.; Lane, S. T.; Lee, W.-H.; Cate, J. H. D.; Jin, Y.-S. Enhanced Cellobiose Fermentation by Engineered Saccharomyces Cerevisiae Expressing a Mutant Cellodextrin Facilitator and Cellobiose Phosphorylase. J. Biotechnol. 2018, 275, 53–59. https://doi.org/10.1016/j.jbiotec.2018.04.008.
(118) Davis López, S. A.; Griffith, D. A.; Choi, B.; Cate, J. H. D.; Tullman-Ercek, D. Evolutionary Engineering Improves Tolerance for Medium-Chain Alcohols in Saccharomyces Cerevisiae. Biotechnol. Biofuels 2018, 11, 90. https://doi.org/10.1186/s13068-018-1089-9.
(117) Cernak, P.; Estrela, R.; Poddar, S.; Skerker, J. M.; Cheng, Y.-F.; Carlson, A. K.; Chen, B.; Glynn, V. M.; Furlan, M.; Ryan, O. W.; Donnelly, M. K.; Arkin, A. P.; Taylor, J. W.; Cate, J. H. D. Engineering Kluyveromyces Marxianus as a Robust Synthetic Biology Platform Host. mBio 2018, 9 (5). https://doi.org/10.1128/mBio.01410-18.
(116) Zhang, C.; Acosta-Sampson, L.; Yu, V. Y.; Cate, J. H. D. Screening of Transporters to Improve Xylodextrin Utilization in the Yeast Saccharomyces Cerevisiae. PloS One 2017, 12 (9), e0184730. https://doi.org/10.1371/journal.pone.0184730.
(115) Thakor, N.; Smith, M. D.; Roberts, L.; Faye, M. D.; Patel, H.; Wieden, H.-J.; Cate, J. H. D.; Holcik, M. Cellular MRNA Recruits the Ribosome via eIF3-PABP Bridge to Initiate Internal Translation. RNA Biol. 2017, 14 (5), 553–567. https://doi.org/10.1080/15476286.2015.1137419.
(114) Lintner, N. G.; McClure, K. F.; Petersen, D.; Londregan, A. T.; Piotrowski, D. W.; Wei, L.; Xiao, J.; Bolt, M.; Loria, P. M.; Maguire, B.; Geoghegan, K. F.; Huang, A.; Rolph, T.; Liras, S.; Doudna, J. A.; Dullea, R. G.; Cate, J. H. D. Selective Stalling of Human Translation through Small-Molecule Engagement of the Ribosome Nascent Chain. PLoS Biol. 2017, 15 (3), e2001882. https://doi.org/10.1371/journal.pbio.2001882.
(113) Jin, Y.-S.; Cate, J. H. Metabolic Engineering of Yeast for Lignocellulosic Biofuel Production. Curr. Opin. Chem. Biol. 2017, 41, 99–106. https://doi.org/10.1016/j.cbpa.2017.10.025.
(112) Han, B.-G.; Watson, Z.; Cate, J. H. D.; Glaeser, R. M. Monolayer-Crystal Streptavidin Support Films Provide an Internal Standard of Cryo-EM Image Quality. J. Struct. Biol. 2017, 200 (3), 307–313. https://doi.org/10.1016/j.jsb.2017.02.009.
(111) Hamadani, K. M.; Howe, J.; Jensen, M. K.; Wu, P.; Cate, J. H. D.; Marqusee, S. An in Vitro Tag-and-Modify Protein Sample Generation Method for Single-Molecule Fluorescence Resonance Energy Transfer. J. Biol. Chem. 2017, 292 (38), 15636–15648. https://doi.org/10.1074/jbc.M117.791723.
(110) Chomvong, K.; Lin, E.; Blaisse, M.; Gillespie, A. E.; Cate, J. H. D. Relief of Xylose Binding to Cellobiose Phosphorylase by a Single Distal Mutation. ACS Synth. Biol. 2017, 6 (2), 206–210. https://doi.org/10.1021/acssynbio.6b00211.
(109) Chomvong, K.; Benjamin, D. I.; Nomura, D. K.; Cate, J. H. D. Cellobiose Consumption Uncouples Extracellular Glucose Sensing and Glucose Metabolism in Saccharomyces Cerevisiae. mBio 2017, 8 (4). https://doi.org/10.1128/mBio.00855-17.
(108) Cate, J. H. D. Human eIF3: From “blobology” to Biological Insight. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2017, 372 (1716). https://doi.org/10.1098/rstb.2016.0176.
(107) Acosta-Sampson, L.; Döring, K.; Lin, Y.; Yu, V. Y.; Bukau, B.; Kramer, G.; Cate, J. H. D. Role for Ribosome-Associated Complex and Stress-Seventy Subfamily B (RAC-Ssb) in Integral Membrane Protein Translation. J. Biol. Chem. 2017, 292 (48), 19610–19627. https://doi.org/10.1074/jbc.M117.813857.
(106) Smith, M. D.; Arake-Tacca, L.; Nitido, A.; Montabana, E.; Park, A.; Cate, J. H. Assembly of EIF3 Mediated by Mutually Dependent Subunit Insertion. Structure 2016, 24 (6), 886–896. https://doi.org/10.1016/j.str.2016.02.024.
(105) Sen, A.; Acosta-Sampson, L.; Alvaro, C. G.; Ahn, J. S.; Cate, J. H. D.; Thorner, J. Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2016, 82 (24), 7074–7085. https://doi.org/10.1128/AEM.02148-16.
(104) Samelson, A. J.; Jensen, M. K.; Soto, R. A.; Cate, J. H. D.; Marqusee, S. Quantitative Determination of Ribosome Nascent Chain Stability. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (47), 13402–13407. https://doi.org/10.1073/pnas.1610272113.
(103) Ryan, O. W.; Poddar, S.; Cate, J. H. D. CRISPR-Cas9 Genome Engineering in Saccharomyces Cerevisiae Cells. Cold Spring Harb. Protoc. 2016, 2016 (6). https://doi.org/10.1101/pdb.prot086827.
(102) Li, X.; Park, A.; Estrela, R.; Kim, S.-R.; Jin, Y.-S.; Cate, J. H. D. Comparison of Xylose Fermentation by Two High-Performance Engineered Strains of Saccharomyces Cerevisiae. Biotechnol. Rep. Amst. Neth. 2016, 9, 53–56. https://doi.org/10.1016/j.btre.2016.01.003.
(101) Lee, A. S.; Kranzusch, P. J.; Doudna, J. A.; Cate, J. H. D. eIF3d Is an mRNA Cap-Binding Protein That Is Required for Specialized Translation Initiation. Nature 2016, 536 (7614), 96–99. https://doi.org/10.1038/nature18954.
(100) Glaeser, R. M.; Han, B.-G.; Csencsits, R.; Killilea, A.; Pulk, A.; Cate, J. H. D. Factors That Influence the Formation and Stability of Thin, Cryo-EM Specimens. Biophys. J. 2016, 110 (4), 749–755. https://doi.org/10.1016/j.bpj.2015.07.050.
(99) Estrela, R.; Cate, J. H. D. Energy Biotechnology in the CRISPR-Cas9 Era. Curr. Opin. Biotechnol. 2016, 38, 79–84. https://doi.org/10.1016/j.copbio.2016.01.005.
(98) East-Seletsky, A.; O’Connell, M. R.; Knight, S. C.; Burstein, D.; Cate, J. H. D.; Tjian, R.; Doudna, J. A. Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature 2016, 538 (7624), 270–273. https://doi.org/10.1038/nature19802.
(97) Cocozaki, A. I.; Altman, R. B.; Huang, J.; Buurman, E. T.; Kazmirski, S. L.; Doig, P.; Prince, D. B.; Blanchard, S. C.; Cate, J. H. D.; Ferguson, A. D. Resistance Mutations Generate Divergent Antibiotic Susceptibility Profiles against Translation Inhibitors. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (29), 8188–8193. https://doi.org/10.1073/pnas.1605127113.
(96) Chomvong, K.; Bauer, S.; Benjamin, D. I.; Li, X.; Nomura, D. K.; Cate, J. H. D. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose. PloS One 2016, 11 (6), e0158111. https://doi.org/10.1371/journal.pone.0158111.
(95) Cate, J. H. D.; Ball, A. S. Editorial Overview: Energy Biotechnology. Curr. Opin. Biotechnol. 2016, 38, v–vii. https://doi.org/10.1016/j.copbio.2016.02.019.
(94) Cate, J. H. D. STRUCTURE. A Big Bang in Spliceosome Structural Biology. Science 2016, 351 (6280), 1390–1392. https://doi.org/10.1126/science.aaf4465.
(93) Wei, N.; Oh, E. J.; Million, G.; Cate, J. H. D.; Jin, Y.-S. Simultaneous Utilization of Cellobiose, Xylose, and Acetic Acid from Lignocellulosic Biomass for Biofuel Production by an Engineered Yeast Platform. ACS Synth. Biol. 2015, 4 (6), 707–713. https://doi.org/10.1021/sb500364q.
(92) Wasserman, M. R.; Pulk, A.; Zhou, Z.; Altman, R. B.; Zinder, J. C.; Green, K. D.; Garneau-Tsodikova, S.; Cate, J. H. D.; Blanchard, S. C. Chemically Related 4,5-Linked Aminoglycoside Antibiotics Drive Subunit Rotation in Opposite Directions. Nat. Commun. 2015, 6, 7896. https://doi.org/10.1038/ncomms8896.
(91) Noeske, J.; Wasserman, M. R.; Terry, D. S.; Altman, R. B.; Blanchard, S. C.; Cate, J. H. D. High-Resolution Structure of the Escherichia Coli Ribosome. Nat. Struct. Mol. Biol. 2015, 22 (4), 336–341. https://doi.org/10.1038/nsmb.2994.
(90) Li, X.; Yu, V. Y.; Lin, Y.; Chomvong, K.; Estrela, R.; Park, A.; Liang, J. M.; Znameroski, E. A.; Feehan, J.; Kim, S. R.; Jin, Y.-S.; Glass, N. L.; Cate, J. H. D. Expanding Xylose Metabolism in Yeast for Plant Cell Wall Conversion to Biofuels. eLife 2015, 4. https://doi.org/10.7554/eLife.05896.
(89) Li, X.; Chomvong, K.; Yu, V. Y.; Liang, J. M.; Lin, Y.; Cate, J. H. D. Cellobionic Acid Utilization: From Neurospora Crassa to Saccharomyces Cerevisiae. Biotechnol. Biofuels 2015, 8, 120. https://doi.org/10.1186/s13068-015-0303-2.
(88) Lee, A. S. Y.; Kranzusch, P. J.; Cate, J. H. D. eIF3 Targets Cell-Proliferation Messenger RNAs for Translational Activation or Repression. Nature 2015, 522 (7554), 111–114. https://doi.org/10.1038/nature14267.
(87) Znameroski, E. A.; Li, X.; Tsai, J. C.; Galazka, J. M.; Glass, N. L.; Cate, J. H. D. Evidence for Transceptor Function of Cellodextrin Transporters in Neurospora Crassa. J. Biol. Chem. 2014, 289 (5), 2610–2619. https://doi.org/10.1074/jbc.M113.533273.
(86) Zhang, G.-C.; Kong, I. I.; Kim, H.; Liu, J.-J.; Cate, J. H. D.; Jin, Y.-S. Construction of a Quadruple Auxotrophic Mutant of an Industrial Polyploid Saccharomyces Cerevisiae Strain by Using RNA-Guided Cas9 Nuclease. Appl. Environ. Microbiol. 2014, 80 (24), 7694–7701. https://doi.org/10.1128/AEM.02310-14.
(85) Xiong, Y.; Coradetti, S. T.; Li, X.; Gritsenko, M. A.; Clauss, T.; Petyuk, V.; Camp, D.; Smith, R.; Cate, J. H. D.; Yang, F.; Glass, N. L. The Proteome and Phosphoproteome of Neurospora Crassa in Response to Cellulose, Sucrose and Carbon Starvation. Fungal Genet. Biol. FG B 2014, 72, 21–33. https://doi.org/10.1016/j.fgb.2014.05.005.
(84) Vu, V. V.; Beeson, W. T.; Phillips, C. M.; Cate, J. H. D.; Marletta, M. A. Determinants of Regioselective Hydroxylation in the Fungal Polysaccharide Monooxygenases. J. Am. Chem. Soc. 2014, 136 (2), 562–565. https://doi.org/10.1021/ja409384b.
(83) Ryan, O. W.; Skerker, J. M.; Maurer, M. J.; Li, X.; Tsai, J. C.; Poddar, S.; Lee, M. E.; DeLoache, W.; Dueber, J. E.; Arkin, A. P.; Cate, J. H. D. Selection of Chromosomal DNA Libraries Using a Multiplex CRISPR System. eLife 2014, 3. https://doi.org/10.7554/eLife.03703.
(82) Ryan, O. W.; Cate, J. H. D. Multiplex Engineering of Industrial Yeast Genomes Using CRISPRm. Methods Enzymol. 2014, 546, 473–489. https://doi.org/10.1016/B978-0-12-801185-0.00023-4.
(81) Rui, Z.; Li, X.; Zhu, X.; Liu, J.; Domigan, B.; Barr, I.; Cate, J. H. D.; Zhang, W. Microbial Biosynthesis of Medium-Chain 1-Alkenes by a Nonheme Iron Oxidase. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (51), 18237–18242. https://doi.org/10.1073/pnas.1419701112.
(80) Olivier, N. B.; Altman, R. B.; Noeske, J.; Basarab, G. S.; Code, E.; Ferguson, A. D.; Gao, N.; Huang, J.; Juette, M. F.; Livchak, S.; Miller, M. D.; Prince, D. B.; Cate, J. H. D.; Buurman, E. T.; Blanchard, S. C. Negamycin Induces Translational Stalling and Miscoding by Binding to the Small Subunit Head Domain of the Escherichia Coli Ribosome. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (46), 16274–16279. https://doi.org/10.1073/pnas.1414401111.
(79) Noeske, J.; Huang, J.; Olivier, N. B.; Giacobbe, R. A.; Zambrowski, M.; Cate, J. H. D. Synergy of Streptogramin Antibiotics Occurs Independently of Their Effects on Translation. Antimicrob. Agents Chemother. 2014, 58 (9), 5269–5279. https://doi.org/10.1128/AAC.03389-14.
(78) Nan, H.; Seo, S.-O.; Oh, E. J.; Seo, J.-H.; Cate, J. H. D.; Jin, Y.-S. 2,3-Butanediol Production from Cellobiose by Engineered Saccharomyces Cerevisiae. Appl. Microbiol. Biotechnol. 2014, 98 (12), 5757–5764. https://doi.org/10.1007/s00253-014-5683-x.
(77) Lintner, N. G.; Cate, J. H. D. Regulating the Ribosome: A Spotlight on RNA Dark Matter. Mol. Cell 2014, 54 (1), 1–2. https://doi.org/10.1016/j.molcel.2014.03.042.
(76) Lin, Y.; Chomvong, K.; Acosta-Sampson, L.; Estrela, R.; Galazka, J. M.; Kim, S. R.; Jin, Y.-S.; Cate, J. H. Leveraging Transcription Factors to Speed Cellobiose Fermentation by Saccharomyces Cerevisiae. Biotechnol. Biofuels 2014, 7 (1), 126. https://doi.org/10.1186/s13068-014-0126-6.
(75) Kim, H.; Lee, W.-H.; Galazka, J. M.; Cate, J. H. D.; Jin, Y.-S. Analysis of Cellodextrin Transporters from Neurospora Crassa in Saccharomyces Cerevisiae for Cellobiose Fermentation. Appl. Microbiol. Biotechnol. 2014, 98 (3), 1087–1094. https://doi.org/10.1007/s00253-013-5339-2.
(74) Chomvong, K.; Kordić, V.; Li, X.; Bauer, S.; Gillespie, A. E.; Ha, S.-J.; Oh, E. J.; Galazka, J. M.; Jin, Y.-S.; Cate, J. H. D. Overcoming Inefficient Cellobiose Fermentation by Cellobiose Phosphorylase in the Presence of Xylose. Biotechnol. Biofuels 2014, 7, 85. https://doi.org/10.1186/1754-6834-7-85.
(73) Ban, N.; Beckmann, R.; Cate, J. H. D.; Dinman, J. D.; Dragon, F.; Ellis, S. R.; Lafontaine, D. L. J.; Lindahl, L.; Liljas, A.; Lipton, J. M.; McAlear, M. A.; Moore, P. B.; Noller, H. F.; Ortega, J.; Panse, V. G.; Ramakrishnan, V.; Spahn, C. M. T.; Steitz, T. A.; Tchorzewski, M.; Tollervey, D.; Warren, A. J.; Williamson, J. R.; Wilson, D.; Yonath, A.; Yusupov, M. A New System for Naming Ribosomal Proteins. Curr. Opin. Struct. Biol. 2014, 24, 165–169. https://doi.org/10.1016/j.sbi.2014.01.002.
(72) Zepeda, V.; Dassa, B.; Borovok, I.; Lamed, R.; Bayer, E. A.; Cate, J. H. D. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium Papyrosolvens C7 (ATCC 700395). Genome Announc. 2013, 1 (5). https://doi.org/10.1128/genomeA.00698-13.
(71) Whitford, P. C.; Blanchard, S. C.; Cate, J. H. D.; Sanbonmatsu, K. Y. Connecting the Kinetics and Energy Landscape of TRNA Translocation on the Ribosome. PLoS Comput. Biol. 2013, 9 (3), e1003003. https://doi.org/10.1371/journal.pcbi.1003003.
(70) Wei, N.; Quarterman, J.; Kim, S. R.; Cate, J. H. D.; Jin, Y.-S. Enhanced Biofuel Production through Coupled Acetic Acid and Xylose Consumption by Engineered Yeast. Nat. Commun. 2013, 4, 2580. https://doi.org/10.1038/ncomms3580.
(69) Sun, C.; Querol-Audí, J.; Mortimer, S. A.; Arias-Palomo, E.; Doudna, J. A.; Nogales, E.; Cate, J. H. D. Two RNA-Binding Motifs in EIF3 Direct HCV IRES-Dependent Translation. Nucleic Acids Res. 2013, 41 (15), 7512–7521. https://doi.org/10.1093/nar/gkt510.
(68) Smith, M. D.; Gu, Y.; Querol-Audí, J.; Vogan, J. M.; Nitido, A.; Cate, J. H. D. Human-like Eukaryotic Translation Initiation Factor 3 from Neurospora Crassa. PloS One 2013, 8 (11), e78715. https://doi.org/10.1371/journal.pone.0078715.
(67) Querol-Audi, J.; Sun, C.; Vogan, J. M.; Smith, M. D.; Gu, Y.; Cate, J. H. D.; Nogales, E. Architecture of Human Translation Initiation Factor 3. Structure 2013, 21 (6), 920–928. https://doi.org/10.1016/j.str.2013.04.002.
(66) Pulk, A.; Cate, J. H. D. Control of Ribosomal Subunit Rotation by Elongation Factor G. Science 2013, 340 (6140), 1235970. https://doi.org/10.1126/science.1235970.
(65) Oh, E. J.; Ha, S.-J.; Rin Kim, S.; Lee, W.-H.; Galazka, J. M.; Cate, J. H. D.; Jin, Y.-S. Enhanced Xylitol Production through Simultaneous Co-Utilization of Cellobiose and Xylose by Engineered Saccharomyces Cerevisiae. Metab. Eng. 2013, 15, 226–234. https://doi.org/10.1016/j.ymben.2012.09.003.
(64) Li, S.; Ha, S.-J.; Kim, H. J.; Galazka, J. M.; Cate, J. H. D.; Jin, Y.-S.; Zhao, H. Investigation of the Functional Role of Aldose 1-Epimerase in Engineered Cellobiose Utilization. J. Biotechnol. 2013, 168 (1), 1–6. https://doi.org/10.1016/j.jbiotec.2013.08.003.
(63) Ha, S.-J.; Kim, S. R.; Kim, H.; Du, J.; Cate, J. H. D.; Jin, Y.-S. Continuous Co-Fermentation of Cellobiose and Xylose by Engineered Saccharomyces Cerevisiae. Bioresour. Technol. 2013, 149, 525–531. https://doi.org/10.1016/j.biortech.2013.09.082.
(62) Ha, S.-J.; Kim, H.; Lin, Y.; Jang, M.-U.; Galazka, J. M.; Kim, T.-J.; Cate, J. H. D.; Jin, Y.-S. Single Amino Acid Substitutions in HXT2.4 from Scheffersomyces Stipitis Lead to Improved Cellobiose Fermentation by Engineered Saccharomyces Cerevisiae. Appl. Environ. Microbiol. 2013, 79 (5), 1500–1507. https://doi.org/10.1128/AEM.03253-12.
(61) Ha, S.-J.; Galazka, J. M.; Joong Oh, E.; Kordić, V.; Kim, H.; Jin, Y.-S.; Cate, J. H. D. Energetic Benefits and Rapid Cellobiose Fermentation by Saccharomyces Cerevisiae Expressing Cellobiose Phosphorylase and Mutant Cellodextrin Transporters. Metab. Eng. 2013, 15, 134–143. https://doi.org/10.1016/j.ymben.2012.11.005.
(60) Glass, N. L.; Schmoll, M.; Cate, J. H. D.; Coradetti, S. Plant Cell Wall Deconstruction by Ascomycete Fungi. Annu. Rev. Microbiol. 2013, 67, 477–498. https://doi.org/10.1146/annurev-micro-092611-150044.
(59) Dunkle, J. A.; Cate, J. H. D. An Introduction to the Structure and Function of the Ribosome. EcoSal Plus 2013, 5(2). https://doi.org/10.1128/ecosal.2.5.2.
(58) Znameroski, E. A.; Coradetti, S. T.; Roche, C. M.; Tsai, J. C.; Iavarone, A. T.; Cate, J. H. D.; Glass, N. L. Induction of Lignocellulose-Degrading Enzymes in Neurospora Crassa by Cellodextrins. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (16), 6012–6017. https://doi.org/10.1073/pnas.1118440109.
(57) Wang, L.; Pulk, A.; Wasserman, M. R.; Feldman, M. B.; Altman, R. B.; Cate, J. H. D.; Blanchard, S. C. Allosteric Control of the Ribosome by Small-Molecule Antibiotics. Nat. Struct. Mol. Biol. 2012, 19 (9), 957–963. https://doi.org/10.1038/nsmb.2360.
(56) Noeske, J.; Cate, J. H. D. Structural Basis for Protein Synthesis: Snapshots of the Ribosome in Motion. Curr. Opin. Struct. Biol. 2012, 22 (6), 743–749. https://doi.org/10.1016/j.sbi.2012.07.011.
(55) McGinnis, J. L.; Dunkle, J. A.; Cate, J. H. D.; Weeks, K. M. The Mechanisms of RNA SHAPE Chemistry. J. Am. Chem. Soc. 2012, 134 (15), 6617–6624. https://doi.org/10.1021/ja2104075.
(54) Li, X.; Beeson, W. T. 4th; Phillips, C. M.; Marletta, M. A.; Cate, J. H. D. Structural Basis for Substrate Targeting and Catalysis by Fungal Polysaccharide Monooxygenases. Structure 2012, 20 (6), 1051–1061. https://doi.org/10.1016/j.str.2012.04.002.
(53) Jin, Y.-S.; Cate, J. H. D. Model-Guided Strain Improvement: Simultaneous Hydrolysis and Co-Fermentation of Cellulosic Sugars. Biotechnol. J. 2012, 7 (3), 328–329. https://doi.org/10.1002/biot.201100489.
(52) Beeson, W. T.; Phillips, C. M.; Cate, J. H. D.; Marletta, M. A. Oxidative Cleavage of Cellulose by Fungal Copper-Dependent Polysaccharide Monooxygenases. J. Am. Chem. Soc. 2012, 134 (2), 890–892. https://doi.org/10.1021/ja210657t.
(51) Sun, C.; Todorovic, A.; Querol-Audí, J.; Bai, Y.; Villa, N.; Snyder, M.; Ashchyan, J.; Lewis, C. S.; Hartland, A.; Gradia, S.; Fraser, C. S.; Doudna, J. A.; Nogales, E.; Cate, J. H. D. Functional Reconstitution of Human Eukaryotic Translation Initiation Factor 3 (EIF3). Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (51), 20473–20478. https://doi.org/10.1073/pnas.1116821108.
(50) Phillips, C. M.; Beeson, W. T.; Cate, J. H.; Marletta, M. A. Cellobiose Dehydrogenase and a Copper-Dependent Polysaccharide Monooxygenase Potentiate Cellulose Degradation by Neurospora Crassa. ACS Chem. Biol. 2011, 6 (12), 1399–1406. https://doi.org/10.1021/cb200351y.
(49) Ha, S.-J.; Wei, Q.; Kim, S. R.; Galazka, J. M.; Cate, J. H. D.; Jin, Y.-S. Cofermentation of Cellobiose and Galactose by an Engineered Saccharomyces Cerevisiae Strain. Appl. Environ. Microbiol. 2011, 77 (16), 5822–5825. https://doi.org/10.1128/AEM.05228-11.
(48) Ha, S.-J.; Galazka, J. M.; Kim, S. R.; Choi, J.-H.; Yang, X.; Seo, J.-H.; Glass, N. L.; Cate, J. H. D.; Jin, Y.-S. Engineered Saccharomyces Cerevisiae Capable of Simultaneous Cellobiose and Xylose Fermentation. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (2), 504–509. https://doi.org/10.1073/pnas.1010456108.
(47) Galazka, J. M.; Cate, J. H. D. A New Diet for Yeast to Improve Biofuel Production. Bioeng. Bugs 2011, 2 (4), 199–202. https://doi.org/10.4161/bbug.2.4.15624.
(46) Dunkle, J. A.; Wang, L.; Feldman, M. B.; Pulk, A.; Chen, V. B.; Kapral, G. J.; Noeske, J.; Richardson, J. S.; Blanchard, S. C.; Cate, J. H. D. Structures of the Bacterial Ribosome in Classical and Hybrid States of TRNA Binding. Science 2011, 332 (6032), 981–984. https://doi.org/10.1126/science.1202692.
(45) Beeson, W. T. 4th; Iavarone, A. T.; Hausmann, C. D.; Cate, J. H. D.; Marletta, M. A. Extracellular Aldonolactonase from Myceliophthora Thermophila. Appl. Environ. Microbiol. 2011, 77 (2), 650–656. https://doi.org/10.1128/AEM.01922-10.
(44) Sun, C.; Pager, C. T.; Luo, G.; Sarnow, P.; Cate, J. H. D. Hepatitis C Virus Core-Derived Peptides Inhibit Genotype 1b Viral Genome Replication via Interaction with DDX3X. PloS One 2010, 5 (9), e12826. https://doi.org/10.1371/journal.pone.0012826.
(43) Munro, J. B.; Altman, R. B.; Tung, C.-S.; Cate, J. H. D.; Sanbonmatsu, K. Y.; Blanchard, S. C. Spontaneous Formation of the Unlocked State of the Ribosome Is a Multistep Process. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (2), 709–714. https://doi.org/10.1073/pnas.0908597107.
(42) Llano-Sotelo, B.; Dunkle, J.; Klepacki, D.; Zhang, W.; Fernandes, P.; Cate, J. H. D.; Mankin, A. S. Binding and Action of CEM-101, a New Fluoroketolide Antibiotic That Inhibits Protein Synthesis. Antimicrob. Agents Chemother. 2010, 54 (12), 4961–4970. https://doi.org/10.1128/AAC.00860-10.
(41) Li, S.; Du, J.; Sun, J.; Galazka, J. M.; Glass, N. L.; Cate, J. H. D.; Yang, X.; Zhao, H. Overcoming Glucose Repression in Mixed Sugar Fermentation by Co-Expressing a Cellobiose Transporter and a β-Glucosidase in Saccharomyces Cerevisiae. Mol. Biosyst. 2010, 6 (11), 2129–2132. https://doi.org/10.1039/c0mb00063a.
(40) Galazka, J. M.; Tian, C.; Beeson, W. T.; Martinez, B.; Glass, N. L.; Cate, J. H. D. Cellodextrin Transport in Yeast for Improved Biofuel Production. Science 2010, 330 (6000), 84–86. https://doi.org/10.1126/science.1192838.
(39) Dunkle, J. A.; Xiong, L.; Mankin, A. S.; Cate, J. H. D. Structures of the Escherichia Coli Ribosome with Antibiotics Bound near the Peptidyl Transferase Center Explain Spectra of Drug Action. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (40), 17152–17157. https://doi.org/10.1073/pnas.1007988107.
(38) Dunkle, J. A.; Cate, J. H. D. Ribosome Structure and Dynamics during Translocation and Termination. Annu. Rev. Biophys. 2010, 39, 227–244. https://doi.org/10.1146/annurev.biophys.37.032807.125954.
(37) Cate, J. H. D. Some Reassembly Required. Mol. Microbiol. 2010, 75 (4), 793–794. https://doi.org/10.1111/j.1365-2958.2009.07017.x.
(36) Cai, Q.; Todorovic, A.; Andaya, A.; Gao, J.; Leary, J. A.; Cate, J. H. D. Distinct Regions of Human EIF3 Are Sufficient for Binding to the HCV IRES and the 40S Ribosomal Subunit. J. Mol. Biol. 2010, 403 (2), 185–196. https://doi.org/10.1016/j.jmb.2010.07.054.
(35) Zhang, W.; Dunkle, J. A.; Cate, J. H. D. Structures of the Ribosome in Intermediate States of Ratcheting. Science 2009, 325 (5943), 1014–1017. https://doi.org/10.1126/science.1175275.
(34) Tian, C.; Beeson, W. T.; Iavarone, A. T.; Sun, J.; Marletta, M. A.; Cate, J. H. D.; Glass, N. L. Systems Analysis of Plant Cell Wall Degradation by the Model Filamentous Fungus Neurospora Crassa. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (52), 22157–22162. https://doi.org/10.1073/pnas.0906810106.
(33) Pai, R. D.; Zhang, W.; Schuwirth, B. S.; Hirokawa, G.; Kaji, H.; Kaji, A.; Cate, J. H. D. Structural Insights into Ribosome Recycling Factor Interactions with the 70S Ribosome. J. Mol. Biol. 2008, 376 (5), 1334–1347. https://doi.org/10.1016/j.jmb.2007.12.048.
(32) Borovinskaya, M. A.; Shoji, S.; Fredrick, K.; Cate, J. H. D. Structural Basis for Hygromycin B Inhibition of Protein Biosynthesis. RNA 2008, 14 (8), 1590–1599. https://doi.org/10.1261/rna.1076908.
(31) Borovinskaya, M. A.; Shoji, S.; Holton, J. M.; Fredrick, K.; Cate, J. H. D. A Steric Block in Translation Caused by the Antibiotic Spectinomycin. ACS Chem. Biol. 2007, 2 (8), 545–552. https://doi.org/10.1021/cb700100n.
(30) Borovinskaya, M. A.; Pai, R. D.; Zhang, W.; Schuwirth, B. S.; Holton, J. M.; Hirokawa, G.; Kaji, H.; Kaji, A.; Cate, J. H. D. Structural Basis for Aminoglycoside Inhibition of Bacterial Ribosome Recycling. Nat. Struct. Mol. Biol. 2007, 14 (8), 727–732. https://doi.org/10.1038/nsmb1271.
(29) Berk, V.; Cate, J. H. D. Insights into Protein Biosynthesis from Structures of Bacterial Ribosomes. Curr. Opin. Struct. Biol. 2007, 17 (3), 302–309. https://doi.org/10.1016/j.sbi.2007.05.009.
(28) Schuwirth, B. S.; Day, J. M.; Hau, C. W.; Janssen, G. R.; Dahlberg, A. E.; Cate, J. H. D.; Vila-Sanjurjo, A. Structural Analysis of Kasugamycin Inhibition of Translation. Nat. Struct. Mol. Biol. 2006, 13 (10), 879–886. https://doi.org/10.1038/nsmb1150.
(27) Berk, V.; Zhang, W.; Pai, R. D.; Cate, J. H. D. Structural Basis for MRNA and TRNA Positioning on the Ribosome. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (43), 15830–15834. https://doi.org/10.1073/pnas.0607541103.
(26) Shenvi, C. L.; Dong, K. C.; Friedman, E. M.; Hanson, J. A.; Cate, J. H. D. Accessibility of 18S RRNA in Human 40S Subunits and 80S Ribosomes at Physiological Magnesium Ion Concentrations--Implications for the Study of Ribosome Dynamics. RNA 2005, 11 (12), 1898–1908. https://doi.org/10.1261/rna.2192805.
(25) Schuwirth, B. S.; Borovinskaya, M. A.; Hau, C. W.; Zhang, W.; Vila-Sanjurjo, A.; Holton, J. M.; Cate, J. H. D. Structures of the Bacterial Ribosome at 3.5 A Resolution. Science 2005, 310 (5749), 827–834. https://doi.org/10.1126/science.1117230.
(24) Liau, A.; Karnik, R.; Majumdar, A.; Cate, J. H. D. Mixing Crowded Biological Solutions in Milliseconds. Anal. Chem. 2005, 77 (23), 7618–7625. https://doi.org/10.1021/ac050827h.
(23) Cate, J. H. D. The Ins and Outs of Protein Synthesis. Structure 2005, 13 (11), 1584–1585. https://doi.org/10.1016/j.str.2005.10.002.
(22) Vila-Sanjurjo, A.; Schuwirth, B.-S.; Hau, C. W.; Cate, J. H. D. Structural Basis for the Control of Translation Initiation during Stress. Nat. Struct. Mol. Biol. 2004, 11 (11), 1054–1059. https://doi.org/10.1038/nsmb850.
(21) Ke, A.; Zhou, K.; Ding, F.; Cate, J. H. D.; Doudna, J. A. A Conformational Switch Controls Hepatitis Delta Virus Ribozyme Catalysis. Nature 2004, 429 (6988), 201–205. https://doi.org/10.1038/nature02522.
(20) Vila-Sanjurjo, A.; Ridgeway, W. K.; Seymaner, V.; Zhang, W.; Santoso, S.; Yu, K.; Cate, J. H. D. X-Ray Crystal Structures of the WT and a Hyper-Accurate Ribosome from Escherichia Coli. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(15), 8682–8687. https://doi.org/10.1073/pnas.1133380100.
(19) Noller, H. F.; Yusupov, M. M.; Yusupova, G. Z.; Baucom, A.; Cate, J. H. D. Translocation of TRNA during Protein Synthesis. FEBS Lett. 2002, 514 (1), 11–16. https://doi.org/10.1016/s0014-5793(02)02327-x.
(18) Yusupova, G. Z.; Yusupov, M. M.; Cate, J. H.; Noller, H. F. The Path of Messenger RNA through the Ribosome. Cell 2001, 106 (2), 233–241. https://doi.org/10.1016/s0092-8674(01)00435-4.
(17) Yusupov, M. M.; Yusupova, G. Z.; Baucom, A.; Lieberman, K.; Earnest, T. N.; Cate, J. H.; Noller, H. F. Crystal Structure of the Ribosome at 5.5 A Resolution. Science 2001, 292 (5518), 883–896. https://doi.org/10.1126/science.1060089.
(16) Noller, H. F.; Yusupov, M. M.; Yusupova, G. Z.; Baucom, A.; Lieberman, K.; Lancaster, L.; Dallas, A.; Fredrick, K.; Earnest, T. N.; Cate, J. H. Structure of the Ribosome at 5.5 A Resolution and Its Interactions with Functional Ligands. Cold Spring Harb. Symp. Quant. Biol. 2001, 66, 57–66. https://doi.org/10.1101/sqb.2001.66.57.
(15) Gregory, S. T.; Cate, J. H.; Dahlberg, A. E. Streptomycin-Resistant and Streptomycin-Dependent Mutants of the Extreme Thermophile Thermus Thermophilu s. J. Mol. Biol. 2001, 309 (2), 333–338. https://doi.org/10.1006/jmbi.2001.4676.
(14) Gregory, S. T.; Cate, J. H.; Dahlberg, A. E. Spontaneous Erythromycin Resistance Mutation in a 23S rRNA Gene, RrlA, of the Extreme Thermophile Thermus Thermophilus IB-21. J. Bacteriol. 2001, 183 (14), 4382–4385. https://doi.org/10.1128/JB.183.14.4382-4385.2001.
(13) Cate, J. H. Construction of Low-Resolution x-Ray Crystallographic Electron Density Maps of the Ribosome. Methods 2001, 25 (3), 303–308. https://doi.org/10.1006/meth.2001.1242.
(12) Lancaster, L.; Culver, G. M.; Yusupova, G. Z.; Cate, J. H.; Yusupov, M. M.; Noller, H. F. The Location of Protein S8 and Surrounding Elements of 16S RRNA in the 70S Ribosome from Combined Use of Directed Hydroxyl Radical Probing and X-Ray Crystallography. RNA 2000, 6 (5), 717–729. https://doi.org/10.1017/s1355838200000303.
(11) Cate, J. H.; Doudna, J. A. Solving Large RNA Structures by X-Ray Crystallography. Methods Enzymol. 2000, 317, 169–180. https://doi.org/10.1016/s0076-6879(00)17014-4.
(10) Culver, G. M.; Cate, J. H.; Yusupova, G. Z.; Yusupov, M. M.; Noller, H. F. Identification of an RNA-Protein Bridge Spanning the Ribosomal Subunit Interface. Science 1999, 285 (5436), 2133–2136. https://doi.org/10.1126/science.285.5436.2133.
(9) Cate, J. H.; Yusupov, M. M.; Yusupova, G. Z.; Earnest, T. N.; Noller, H. F. X-Ray Crystal Structures of 70S Ribosome Functional Complexes. Science 1999, 285 (5436), 2095–2104. https://doi.org/10.1126/science.285.5436.2095.
(8) Strobel, S. A.; Ortoleva-Donnelly, L.; Ryder, S. P.; Cate, J. H.; Moncoeur, E. Complementary Sets of Noncanonical Base Pairs Mediate RNA Helix Packing in the Group I Intron Active Site. Nat. Struct. Biol. 1998, 5 (1), 60–66. https://doi.org/10.1038/nsb0198-60.
(7) Basu, S.; Rambo, R. P.; Strauss-Soukup, J.; Cate, J. H.; Ferré-D’Amaré, A. R.; Strobel, S. A.; Doudna, J. A. A Specific Monovalent Metal Ion Integral to the AA Platform of the RNA Tetraloop Receptor. Nat. Struct. Biol. 1998, 5(11), 986–992. https://doi.org/10.1038/2960.
(6) Doudna, J. A.; Cate, J. H. RNA Structure: Crystal Clear? Curr. Opin. Struct. Biol. 1997, 7 (3), 310–316. https://doi.org/10.1016/s0959-440x(97)80045-0.
(5) Cate, J. H.; Hanna, R. L.; Doudna, J. A. A Magnesium Ion Core at the Heart of a Ribozyme Domain. Nat. Struct. Biol. 1997, 4 (7), 553–558. https://doi.org/10.1038/nsb0797-553.
(4) Cate, J. H.; Doudna, J. A. A Sparse Matrix Approach to Crystallizing Ribozymes and RNA Motifs. Methods Mol. Biol. 1997, 74, 379–386. https://doi.org/10.1385/0-89603-389-9:379.
(3) Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Szewczak, A. A.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. RNA Tertiary Structure Mediation by Adenosine Platforms. Science 1996, 273 (5282), 1696–1699. https://doi.org/10.1126/science.273.5282.1696.
(2) Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Golden, B. L.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A. Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing. Science 1996, 273 (5282), 1678–1685. https://doi.org/10.1126/science.273.5282.1678.
(1) Cate, J. H.; Doudna, J. A. Metal-Binding Sites in the Major Groove of a Large Ribozyme Domain. Structure 1996, 4 (10), 1221–1229. https://doi.org/10.1016/s0969-2126(96)00129-3.