Alexander, K. (2023b, May 10). California’s catastrophic three-year drought might have had a ... San Francisco Chronicle. https://www.sfchronicle.com/climate/article/california-wildfires-drought-18090830.php
Becker, R. (2021, October 20). Newsom declares drought emergency across California. CalMatters. https://calmatters.org/environment/2021/10/california-drought-newsom-emergency/
Brust C, Kimball JS, Maneta MP, Jencso K and Reichle RH (2021) DroughtCast: A Machine Learning Forecast of the United States Drought Monitor. Front. Big Data 4:773478. doi: 10.3389/fdata.2021.773478
Buechi, H., Weber, P., Heard, S., Cameron, D., & Plantinga, A. J. (2021). Long-term trends in wildfire damages in California. International Journal of Wildland Fire, 30(10), 757–762. https://doi.org/10.1071/wf21024
Cao, J., Guan, F., Zhang, X., Nam, W.-H., Leng, G., Gao, H., Ye, Q., Gu, X., Zeng, J., Zhang, X., Huang, T., & Niyogi, D. (2023). Multiple markov chains for categorial drought prediction on the U.S. Drought Monitor at weekly scale. Journal of Applied Meteorology and Climatology, 62(10), 1415–1435. https://doi.org/10.1175/jamc-d-23-0061.1
Escriva-Bou, A., Medellín-Azuara, J., Hank, E., Abatzoglou, J., & Viers, J. (2022). Drought and California’s Agriculture. Public Policy Institute of California. https://www.ppic.org/wp-content/uploads/policy-brief-drought-and-californias-agriculture.pdf
Funk, C., & Shukla, S. (2020). Drought Early Warning and Forecasting. Elsevier Science Publishing.
Hameed, M. M., Razali, S. F., Mohtar, W. H., Rahman, N. A., & Yaseen, Z. M. (2023). Machine learning models development for accurate multi-months ahead drought forecasting: Case study of the Great Lakes, North America. PLOS ONE, 18(10). https://doi.org/10.1371/journal.pone.0290891
Hao, Z., Xia, Y., Luo, L., Singh, V. P., Ouyang, W., & Hao, F. (2017). Toward a categorical drought prediction system based on U.S. Drought Monitor (USDM) and climate forecast. Journal of Hydrology, 551, 300–305. https://doi.org/10.1016/j.jhydrol.2017.06.005
Howitt, R., Medellín-Azuara, J., MacEwan, D., Lund, J. R., & Sumner, D. (2014). Economic analysis of the 2014 drought for California agriculture (p. 16). University of California, Davis, CA: Center for Watershed Sciences.
Introduction to boosted trees. Introduction to Boosted Trees - xgboost 2.0.3 documentation. (n.d.). https://xgboost.readthedocs.io/en/stable/tutorials/model.html
Lund, J., Medellin-Azuara, J., Durand, J., & Stone, K. (2018). Lessons from California’s 2012–2016 drought. Journal of Water Resources Planning and Management, 144(10). https://doi.org/10.1061/(asce)wr.1943-5452.0000984
Medellín-Azuara, J., Escriva-Bou, A., Rodríguez-Flores, J. M., Cole, S. A., Abatzoglou, J., Viers, J. H., Santos, N., & Sumner, D. A. (2022). Economic Impacts of the 2020–22 Drought on California Agriculture. UC Merced. https://wsm.ucmerced.edu/wp-content/uploads/2023/01/Economic_Impact_CA_Drought_V02-1.pdf
National Drought Mitigation Center (NDMC), the U.S. Department of Agriculture (USDA) and the National Oceanic and Atmospheric Administration (NOAA). U.S. Drought Monitor[Data set]. https://droughtmonitor.unl.edu/CurrentMap.aspx
Nandgude, N., Singh, T. P., Nandgude, S., & Tiwari, M. (2023). Drought prediction: A comprehensive review of different drought prediction models and adopted technologies. Sustainability, 15(15), 11684. doi:https://doi.org/10.3390/su151511684
Ozan Evkaya, O., & Sevinç Kurnaz, F. (2020). Forecasting drought using neural network approaches with transformed time series data. Journal of Applied Statistics, 48(13–15), 2591–2606. https://doi.org/10.1080/02664763.2020.1867829
Park, H., Kim, K., & Lee, D. kun. (2019). Prediction of severe drought area based on random forest: Using satellite image and Topography Data. MDPI. https://doi.org/10.3390/w11040705
World Meteorological Organization (WMO) and Global Water Partnership (GWP), 2016: Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva.