Continental Hydrothermal Systems/Deep Fluids
Hurwitz, S., Stefánsson, A., Shock, E.L., Kleine-Marshall B.I. (2024) The geochemistry of continental hydrothermal systems. In: Treatise of Geochemistry 3e https://doi.org/10.1016/B978-0-323-99762-1.00036-X.
Sims, K.W.W., Messa, C.M., Scott, S.R., Parkesian, A.D., Miller, A., Role, A.L., Moloney, T.P., Shock, E. L., Lowenstern, J.B., McClesky, R.B., Charette, M. A., Carr, B.J., Pasquet, S., Heasler, H., Jaworowoski, C., Holbrook, S., Lindsay, M.R., Colman, D.R., and Boyd, E.S. (2023) The dynamic influence of subsurface geological processes on the assembly and diversification of thermophilic microbial communities in continental hydrothermal systems. Geochim. Cosmochim. Acta 362, 77-103.
Nye, J., Shock, E. and Hartnett, H. (2020) A novel PARAFAC model for continental hot springs reveals unique organic carbon compositions. Organic Geochemistry 141, 103964.
Guild, M., and Shock, E.L. (2020) Predicted speciation of carbon in subduction zone fluids. In: Carbon in Earth’s Interior (C. Manning, J.-F. Lin and W. Mao, eds.) Geophysical Monograph 249, American Geophysical Union, Wiley & Sons, pp. 285-302.
Sharp Z.D., Gibbons JA., Maltsev O., Atudorei V., Pack A., Sengupta S., Shock E.L., Knauth L.P. (2016) A calibration of the triple oxygen isotope fractionation in the SiO2 - H2O system and applications to natural samples. Geochim. Cosmochim. Acta 186, 105-119.
Oiler, J., Shock, E., Hartnett, H., and Yu, H. (2014) Harsh environment sensor array-enabled hot spring mapping. IEEE Sensors Journal 14, 3418-3425.
Oiler, J., Shock, E., Hartnett, H. and Yu, H. (2013) MEMS harsh environment sensor array-enabled hot spring physical parameter mapping, IEEE Sensors 2013, doi: 10.1109/ICSENS.2013.6688332.
Manning, C.E., Shock E. L. and Sverjensky, D.A. (2013) The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: experimental and theoretical constraints. Reviews in Mineralogy & Geochemistry 75, 109-148.
Shock E.L., Holland, M.E., Meyer-Dombard, D.R., Amend, J.P., Osburn, G.R., and Fischer, T. (2010) Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim. Cosmochim. Acta 74, 4005-4043.
Geobiochemistry
Dick, J.M., Boyer, G., Canovas, P.C., Shock, E.L. (2023) Using thermodynamics to obtain geochemical information from genomes. Geobiology 21, 262-273. https://DOI.org/10.1111/gbi.12532
Canovas, P.C. III and Shock, E.L. (2020) Energetics of the citric acid cycle in the deep biosphere. In: Carbon in Earth’s Interior (C. Manning, J.-F. Lin and W. Mao, eds.) Geophysical Monograph 249, American Geophysical Union, Wiley & Sons, pp. 303-327.
St Clair, B., Pottenger, J., Debes, R., Hanselmann, K., and Shock, E. (2019) Distinguishing biotic and abiotic iron oxidation at low temperatures. ACS Earth & Space Chemistry 3, 905-921.
Amenabar M.J., Shock E.L., Roden E.E., Peters J.W., Boyd E.S. (2017) Microbial substrate preference dictated by energy demand rather than supply. Nature Geoscience 10, 577-581, doi:10.1038/ngeo2978.
Canovas P.C. III, Hoehler T., Shock E.L. (2017) Geochemical bioenergetics during low-temperature serpentinization: An example from the Samail ophiolite, Sultanate of Oman. Jour. Geophys. Res. - Biogeosciences 122, 1821-1847, doi:10.1002/2017JG003825.
Canovas P.C. III, Shock E.L. (2016) Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle. Geochim. Cosmochim. Acta 195, 293-322.
Shock E.L., Boyd E.S. (2015) Principles of geobiochemistry. Elements 11, 395-401.
Boyd, E.S., Hamilton, T.L., Havig J.R., Skidmore M. and Shock, E.L. (2014) Chemolithotrophic primary production in a subglacial ecosystem. Applied & Environmental Microbiology 80, 6146-6153.
Dick, J.M. and Shock, E.L. (2013) A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring. PLoS ONE 8, e72395. doi:10.1371/journal.pone.0072395.
Amend, J.P., LaRowe, D.E., McCollom, T.M., and Shock, E.L. (2013) The energetics of organic synthesis inside and outside the cell. Philosophical Transactions of the Royal Society B 368, 20120255.
Swingley, W.D., Meyer-Dombard, D.R., Alsop, E.B., Falenski, H.D., Havig, J.R., Shock, E.L. and Raymond, J. (2012) Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS ONE 7, e38108. doi:10.1371/journal.pone.0038108.
Dick, J.M. and Shock, E.L. (2011) Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring. PLoS ONE 6(8), e22782. doi:10.1371/journal.pone.0022782
Shock, E.L. (2009) Minerals as energy sources for microorganisms. Economic Geology 104, 1235-1248.
Shock, E.L., Glein, C., Canovas, P., and Windman, T. (2008) Hydrothermal geochemistry and the deep biosphere. Proceedings of the 15th International Conference on the Properties of Water and Steam, Eds: Span, R. & Weber, I. published by: VDI - The Association of German Engineers and GET - Society for Energy Technology Düsseldorf http://www.icpws15.de/proceedings.htm
Windman, T., Zolotova, N., Schwandner, F. and Shock, E. (2007) Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. Astrobiology 7, 873-890.
Smith, J., and Shock, E.L. (2007) A thermodynamic analysis of microbial growth experiments. Astrobiology 7, 891-904.
Shock, E.L. and Holland, M. E. (2007) Quantitative habitability. Astrobiology 7, 839-851.
Hoehler, T.M., Amend, J.P., and Shock, E.L. (2007) A “follow the energy” approach for astrobiology. Astrobiology 7, 819-823.
Shock, E.L., Holland, M., Meyer-Dombard, D., and Amend J.P. (2005) Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park, USA. Geothermal Biology and Geochemistry in Yellowstone National Park (eds. Inskeep, WP, McDermott, TR), Thermal Biology Institute, Montana State University pp. 95-112.
Amend, J.P., Rogers, K.L., Shock, E.L., Gurrieri, S., and Inguaggiato, S. (2003) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1, 37-58.
Reysenbach, A.-L. and Shock, E.L. (2002) Merging genomes with geochemistry in hydrothermal ecosystems. Science 296, 1077-1082.
Amend, J.P. and Shock, E.L. (2001) Energetics of overall metabolic reactions in thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews 25, 175-243.
Shock, E.L. (2001) Geochemical habitats in hydrothermal systems. In: First Steps in the Origin of Life in The Universe, Proceedings of the Sixth Trieste Conference on Chemical Evolution, ed. J. Chela-Flores, Kluwer 179-185.
Shock, E.L. (2001) Hydrothermal water/rock/organic/microbe interactions. Proceedings Water/Rock Interaction Conference, ed. R. Cidu, A.A. Balkema Publishers, pp. 61-70.
Shock, E.L., Amend, J.P. and Zolotov, M.Yu. (2000) The early Earth vs. the origin of life. In: The Origin of the Earth and Moon (R. Canup and K. Righter, eds.) University of Arizona Press, p. 527-543.
McCollom, T.M. and Shock, E.L. (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61, 4375-4391.
Shock, E.L., McCollom, T. and Schulte, M.D. (1995) Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems. Origins of Life and Evolution of the Biosphere 25, 141-159.
Hot/Extreme Life
Weeks, K., Trembath-Reichert, E., Boyer, G., Fecteau, K., Howells, A., De Martini, F., Gile, G., and Shock, E. (2023) Characterization of microbiomic and geochemical compositions across the photosynthetic fringe. Frontiers in Microbiology 14:1176606. https://doi.org/10.3389/fmicb.2023.1176606
Fecteau, K.M., Boyd, E.S., Lindsay, M.R., Amenabar, M.J., Robinson, K.J., Debes, R.V.II, and Shock, E.L. (2022) Cyanobacteria and algae meet at the limit of their habitat ranges in mildly acidic hot springs. JGR Biogeosciences 126, e2021JG006446.
Fernandes-Martins, M.C., Keller, L.M., Munro-Ehrlich, M., Ziemlich, K.R., Mettler, M.K., England, A.M., Clare, R., Surya, K., Lindsay, M.R., Shock, E.L., Colman, D.R., Boyd, E.S. (2021) Ecological dichotomies arise in microbial communities due to mixing of deep hydrothermal waters and atmospheric gas in a circumneutral Yellowstone hot spring. Applied & Environmental Microbiology 87:e01598-21.
Colman, D.R., Lindsay, M.L., Harnish, A., Bilbrey, E.M., Amenabar, M.J., Selensky, M.J., Fecteau, K.M., Debes, R.V., Stott, M., Shock, E.L., and Boyd, E.S. (2021) Seasonal hydrologic and geologic forcing of hot spring geochemistry and microbial biodiversity Environmental Microbiology 23, 4034-4053.
Ando, N., Barquera, B., Bartlett, D., Boyd, E., Burnim, A.A., Byer, A.S., Colman, D., Gillilan, R.E., Gruebele, M., Makhatadze, G., Royer, C.A., Shock, E., Wand, A.J., and Watkins, M.B. (2021) The molecular basis for life in extreme environments. Annual Review in Biophysics 50, 343-372.
Boyer, G., Schubotz, F., Woods, J., Summons, R. and Shock, E. (2020) Carbon oxidation state in microbial polar lipids suggests adaptation to hot spring temperature and redox gradients. Front. Microbiol. 11, article 229, doi: 10.3389/fmicb.2020.00229
Lindsay, M.R., Colman, D.R., Amenabar, M.J., Fristad, K.E., Fecteau, K.M., Debes, R.V., Spear, J.R., Shock, E.L., Hoehler, T.M., and Boyd, E.S. (2019) Probing the geological source and biological fate of hydrogen in Yellowstone hot springs. Environmental Microbiology 21, 3816-3830. doi:10.1111/1462-2920.14730.
Lindsay M.R., Amenabar M.J., Fecteau K.M., Debes R.V., Fernandes M.C., Urschel M.R., Fristad K.E., Xu H., Hoehler T.M., Shock E.L., Boyd E.S. (2018) Subsurface processes influence oxidant availability and chemoautotrophic hydrogen metabolism in Yellowstone hot springs. Geobiology 16, 674-692.
Colman D.R., Poudel S., Hamilton T.L., Havig J.R., Selensky M.J., Shock E.L., Boyd, E.S. (2018) Geobiological feedbacks and the evolution of thermoacidophiles. ISME Journal 12, 225-236. doi:10.1038/ismej.2017.162.
Colman D.R., Feyhl-Buska J., Robinson K.J., Fecteau K.M., Xu H., Shock E.L., Boyd E.S. (2016) Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiology Ecology 92 (9) article fiw137, doi: 10.1093/femsec/fiw137.
Schubotz F., Hays L., Meyer-Dombard D.R., Gillespie A., Shock E.L., Summons R.E. (2015) Stable isotope labeling confirms mixatrophic nature of streamer biofilm communities at alkaline hot springs. Frontiers in Microbiology 6:42 10.3389/fmicb.2015.00042.
Schubotz, F., Meyer-Dombard, D.R., Bradley, A.S., Fredricks, H.F., Hinrichs, K.-U., Shock, E.L., and Summons, R.E. (2013) Lipid compositions of streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park. Geobiology DOI: 10.1111/gbi.12051.
Romano, C., D’Imperio, S., Woyke, T., Mavromatis, K., Laskin, R., Shock, E.L., and McDermott, T. (2013) Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. from Yellowstone National Park. Applied & Environmental Microbiology 79, 2932-2943.
Boyd, E.S., Fecteau, K., Havig, J.R., Shock, E.L. and Peters, J.W. (2012) Modeling the habitat range of phototrophic microorganisms in Yellowstone National Park: Toward the development of a comprehensive fitness landscape. Frontiers in Microbiological Chemistry 3, doi: 10.3389/fmicb.2012.00221.
Miller-Coleman, R.L., Dodsworth, J.A., Ross, C., Shock, E.L., Williams A.J., Hartnett, H.E., McDonald, A., Havig, J.R., and Hedlund, B.P. (2012) Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and prediction of Korarchaeota habitat based on machine learning. PLoS ONE 7, e35964. doi:10.1371/journal.pone.0035964.
Loiacono, S.T., Meyer-Dombard, D.R. Havig, J.R., Poret-Peterson, A.T., Hartnett, H.E., and Shock, E.L. (2012) Evidence of high-temperature in situ nif transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park. Environmental Microbiology doi:10.1111/j.1462-2920.2012.02710.x.
Meyer-Dombard, D.R., Shock, E.L. and Amend, J.P. (2012) Effects of elevated trace element concentrations on culturing thermophiles. Extremophiles doi:10.1007/s00792- 012-0432-5.
Meyer-Dombard, D.R., Swingley, W., Raymond, J., Havig, J., Shock, E.L., and Summons, R.E., (2011) Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park. Environmental Microbiology doi:10.1111/j.1462-2920.2011.02476.x.
Cox, A., Shock, E. and Havig, J. (2011) The transition to microbial photosynthesis in hot spring ecosystems. Chemical Geology 280, 344-351.
Havig, J.R., Raymond, J., Meyer-Dombard, D., Zolotova, N., and Shock, E.L. (2011) Merging isotopes and community genomics in a siliceous sinter-depositing hot spring. Journal of Geophysical Research 116, G01005, doi:10.1029/2010JG001415.
Boyd, E.S., Lange, R.K., Mitchell, A.C., Havig, J. R., Hamilton, T.L., Lafrenière, M.L., Shock, E.L., Peters, J.W., and Skidmore, M. (2011) Diversity, abundance, and potential activity of nitrifying and denitrifying microbial assemblages in a subglacial ecosystem. Applied and Environmental Microbiology 77, 4778-4787.
Vick T.J., Dodsworth J.A., Costa K.C., Shock E.L., and Hedlund B.P. (2010) Microbiology and geochemistry of Little Hot Creek, a hot spring environment in Long Valley Caldera. Geobiology 8, 140-154.
Costa, K.C., Navarro, J.B., Shock, E.L. Zhang, C.L., Soukup, D., and Hedlund, B.P. (2009) Microbiology and geochemistry of Great Boiling and Mud Hot Springs in the United States Great Basin. Extremophiles 13, 447-459.
Zhang, C., Ye, Q., Huang, Z., Li, W., Chen, J., Song, Z., Zhao, W., Bagwell, C., Inskeep, W.P., Ross, C., Gao, L., Weigel, J., Romanek, C.S., Shock, E.L., and Hedlund, B.P. (2008) Global occurrence of archaeal amoA genes in terrestrial hot springs. Applied and Environmental Microbiology 74, 6417-6426.
Meyer-Dombard, D.R., Shock, E.L. and Amend, J.P. (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3, 211-227.
Hydrothermal Organic Geochemistry Experiments/Geomimicry
Robinson, K., Seewald, J.S., Sylva, S.P., Fecteau, K.M. and Shock, E.L. (2024) Thermodynamic property estimations for aqueous primary, secondary, and tertiary alkylamines, benzylamines, and their corresponding aminiums across temperature and pressure are validated by measurements from experiments. Geochim. Cosmochim. Acta 372, 62-80. https://doi.org/10.1016/j.gca.2024.03.013
Robinson, K.J., Hartnett, H., Gould, I., Shock, E. (2023) Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds. Icarus 406, 115765.
Bockisch, C., Lorance, E.D., Hartnett, H.E., Shock, E.L., and Gould, I.R. (2022) Kinetics and mechanisms of hydrothermal dehydration of cyclic 1,2- and 1,4-diols. J. Org. Chem. 87, 14299-14307. https://doi.org/10.1021/acs.joc.2c01769
Johnson-Finn, K.N., Gould, I.R., Williams, L.B., Hartnett, H.E., Shock, E.L. (2021) Hydrothermal one-electron oxidation of carboxylic acids in the presence of iron oxide minerals. ACS Earth & Space Chemistry 5, 2715-2728.
Robinson, K.J., Gould, I.R., Hartnett, H.E., Williams, L.B. and Shock, E. L. (2021) Hydrothermal experiments with protonated benzylamines provide predictions of deamination rates across temperature for geochemical modeling. ACS Earth & Space Chemistry 5, 1997-2012.
Robinson, K.J., Bockisch, C., Gould, I.R., Liao, Y., Yang, Z., Glein, C.R., Shaver, G.D., Hartnett, H.E., Williams, L.B., and Shock, E.L. (2021) Quantifying the extent of amide and peptide bond synthesis across geologic conditions relevant to geologic and planetary environments. Geochim. Cosmochim. Acta 300, 318-332.
Johnson-Finn, K.N., Gould, I.R., Williams, L.B., Hartnett, H.E., and Shock, E.L. (2020) Kinetics and mechanisms of hydrothermal ketonic decarboxylation. ACS Earth & Space Chemistry 4, 2082-2095.
Robinson, K.J., Gould, I.R., Fecteau, K.M., Hartnett, H.E., Williams, L.B., and Shock, E.L. (2020) Metastable equilibrium among oxygen- and nitrogen-bearing organic compounds at hydrothermal conditions. Geochim. Cosmochim. Acta 272, 93-104.
Glein, C., Gould, I., Lorance, E., Hartnett, H., and Shock, E. (2020) Mechanisms of decarboxylation of phenylacetic acids and their sodium salts in water and high temperature and pressure. Geochim. Cosmochim. Acta 269, 597-621.
Fecteau, K.M., Gould, I.R., Williams, L.B., Hartnett, H.E., Johnson, K.N., Shock, E.L. (2019) Bulk gold catalyzes hydride transfer in the Cannizzaro and related reactions. New Journal of Chemistry 43, 19137-19148. DOI: 10.1039/c9nj04029c.
Bockisch, C., Lorance, E.D., Shaver, G., Williams, L.B., Hartnett, H.E., Shock, E.L., and Gould, I.R. (2019) Selective green hydrothermal reductions using geomimicry. Green Chemistry 21, 4159-4168.
Robinson K.J., Gould I.R., Fecteau K.M., Hartnett H.E., Williams L.B., Shock E.L. (2019) Deamination reaction mechanisms of protonated amines under hydrothermal conditions. Geochim. Cosmochim. Acta 244, 113-128. 10.1016/j.gca.2018.09.020
Fecteau, K.M., Gould, I.R., Glein, C.R., Williams, L.B., Hartnett, H.E., and Shock, E.L. (2019) Production of carboxylic acids from aldehydes under hydrothermal conditions: A kinetic study of benzaldehyde. ACS Earth & Space Chemistry 3, 179-191.
Bockisch C., Lorance E.D., Hartnett H.E., Shock E.L., Gould I.R. (2018) Kinetics and mechanisms of dehydration of secondary alcohols under hydrothermal conditions. ACS Earth & Space Chemistry 2, 821-832.
Yang Z., Gould I.R., Williams L.B., Hartnett H.E., Shock E. L. (2018) Effects of iron-containing minerals on hydrothermal reactions of ketones. Geochim. Cosmochim. Acta 223, 107-126.
Venturi S. Tassi F., Gould I.R., Shock E.L., Hartnett H.E., Lorance E.D., Bockisch C., Fecteau K.M., Capecchiacci F., Vaselli O. (2017) Mineral-assisted production of benzene under hydrothermal conditions: insights from experimental studies on C6 cyclic hydrocarbons. Jour. Volc. Geothermal Res. 346, 21-27.
Yang Z., Hartnett H.E., Shock E.L. Gould I.R. (2015) Organic oxidations using geomimicry. J. Org. Chem. 80, 12159-12165.
Yang, Z., Lorance, E.D., Bockisch, C., Williams, L.B., Hartnett, H.E., Shock, E.L. and Gould, I.R. (2014) Hydrothermal photochemistry as a mechanistic tool in organic geochemistry: The chemistry of dibenzyl ketone. Journal of Organic Chemistry 79, 7861-7871.
Shipp, J., Gould, I.R., Shock, E.L., Williams, L.B., and Hartnett, H.E. (2014) Sphalerite is a geochemical catalyst for carbon-hydrogen bond activation. PNAS 111, 11642-11645. www.pnas.org/cgi/doi/10.1073/pnas.1324222111.
Shipp, J., Gould, I., Herckes, P., Shock, E., Williams, L., and Hartnett, H. (2013) Organic functional group transformations in water at elevated temperature and pressure: Reversibility, reactivity, and mechanisms. Geochim. Cosmochim. Acta 104, 194-209.
Yang, Z., Gould, I.R., Williams, L.B., Hartnett, H.E., and Shock, E.L. (2012) The central role of ketones in reversible and irreversible hydrothermal organic functional group transformations. Geochim. Cosmochim. Acta 98, 48-65.
McCollom, T.M., Simoneit, B.R.T. and Shock, E.L. (1999) Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum. Energy & Fuels 13, 401-410.
Ocean Worlds
Becker, T.M., Zolotov, M.Y., Gudipati, M.S., Soderblom, J.M., McGrath, M.A., Henderson, B.L., Hedman, M.M., Choukroun, M., Clark, R.N., Chivers, C., Wolfenbarger, N.S., Glein, C.R., Castillo-Rogez, J.C., Mousis, O., Scanlan, K.M., Diniega, S., Seelos, F.P., Goode, W., Postberg, F., Grima, C., Hsu, H.-W., Roth, L., Trumbo, S.K., Miller, K.E., Chan, K., Paranicas, C., Brooks, S.M., Soderlund, K.M., McKinnon, W.B., Hibbitts, C.A., Smith, H.T., Molyneux, P.M., Gladstone, G.R., Cable, M.L., Ulibarri, Z.E., Teolis, B.D., Horanyi, M., Jia, X., Leonard, E.J., Hand, K.P., Vance, S.D., Howell, S.M., Quick, L.C., Mishra, I., Rymer, A.M., Briois, C., Blaney, D.L., Raut, U., Waite, J.H., Retherford, K.D., Shock, E., Withers, P., Westlake, J.H., Jun, I., Mandt, K.E., Buratti, B.J., Korth, H., Pappalardo, R.T., and the Composition Working Group. (2024) Exploring the composition of Europa with the upcoming Europa Clipper mission. Space Science Reviews 220:49 https://doi.org/10.1007/s11214-024-01069-y.
Pappalardo, R.T., Buratti, B.J., Korth, H., Senske, D.A., Blaney, D.L., Blankenship, D.D., Burch, J.L., Christensen, P.R., Kempf, S., Kivelson, M.G., Mazarico, E., Retherford, K.D., Turtle, E.P., Westlake, J.H., Paczkowski, B.G., Ray, T.L., Kampmeier, J., Craft, K.L., Howell, S.M., Klima, R.L., Leonard, E.J., Novak, A.M., Phillips, C.B., Daubar, I.J., Blacksberg, J., Brooks, S.M., Choukroun, M.N., Cochrane, C.J., Diniega, S., Elder, C.M., Ernst, C.M., Gudipathi, M.S., Luspay-Kuti, A., Piqueux, S., Ryder, A.M., Roberts, J.H., Steinbrügge, G.B., Cable, M.L., Scully, J.E., Castillo-Rogez, J.C., Hay, H.C.F.C., Persaud, D.M., Glein, C.R., McKinnon, W.B., Moore, J.M., Raymond, C.A., Schroeder, D.M., Vance, S.D., Wyrick, D.Y., Zolotov, M.Y., Hand, K.P., Nimmo, F., McGrath, M.A., Spencer, J.R., Lunine, J.I., Paty, C.S., Soderbolm, J.M., Collins, G.C., Schmidt, B.E., Rathbun, J.A., Shock, E.L., Becker, T.C., Hayes, A.G., Prockter, L.M., Weiss, B.P., Hibbitts, C.A., Moussessian, A., McEwan, A.S., Patterson, G.W., McNutt, R. L., Jr., Evans, J.P., Larson, T.W., Cangahuala, L.A., Havens, G.G., Buffington, B.B., Bradley, B., Campagnola, S., Hardman, S.H., Srinivasan, J.M., Short, K.L., Jedrey, T.C., St Vaughn, J.A., Clark, K.P., Vertesi, J., and Niebur, C. (2024) Science overview of the Europa Clipper mission. Space Science Reviews 220:40 https://doi.org/10.1007/s11214-024-01070-5.
Waite, J.H., Jr., Burch, J.L., Brockwell, T.G., Young, D.T., Miller, G.P., Persyn, S.C., Stone, J.M., Wilson, P., IV, Miller, K.E., Glein, C.R., Perryman, R.S., McGrath, M., Bolton, S.J., McKinnon, W.B., Mousis, O., Sephton, M.A., Shock, E.L., Choukroun, M., Teolis, B.D., Wyrick, D.Y., Zolotov, M., Ray, C., Magoncelli, A.G., Raffanti, R.R., Thorpe, R.L., Boúquet, A., Salter, T.L., Robinson, K.J., Urdiales, C., Tyler, Y.D., Dirks, G.J., Beebe, C.R., Fugett, D.A., Alexander, J.A., Hanley, J.J., Moorhead-Rosenberg, Z.A., Franke, K.A., Pickens, K.S., Focia, R.J., Magee, B.A., Hoeper, P.J., Aaron, D.P., Thompson, S.L., Persson, K.B., Blase, R.C., Dunn, G.F., Killough, R.L., De Los Santos, A., Rickerson, R.J., Siegmund, O.H.W. (2024) MASPEX-Europa The Europa Clipper neutral gas mass spectrometer investigation. Space Science Reviews 220:30. https://doi.org/10.1007/s11214-024-01061-6
Vance, S.D., Craft, K.L., Shock, E. Schmidt, B.E., Lunine, J., Hand, K.P., McKinnon, W.B., Spiers, E.M., Chivers, C., Lawrence, J.D., Wolfenbarger, N., Leonard, E.J., Robinson, K.J., Styczinski, M.J., Persaud, D.M., Steinbrügge, G., Zolotov, M. Yu., Quick, L.C., Scully, J.E.C., Becker, T.M., Howell, S.M., Clark, R.N., Dombard, A.J., Glein, C.R., Mousis, O., Sephton, M.A., Castillo-Rogez, J., Nimmo, F., McEwen, A.S., Gudipathi, M.S., Jun, I., Jia, X., Postberg, F., Soderlund, K.M., Elder, C.M. (2023) Investigating Europa’s habitability with Europa Clipper. Space Science Reviews 219:81, https://doi.org/10.1007/s11214-023-01025-2.
Robinson, K.J., Hartnett, H., Gould, I., Shock, E. (2023) Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds. Icarus 406, 115765.
Randolph-Flagg, N., Ely, T., Som, S.M., Shock, E.L. German, C.R. and Hoehler, T.M. (2023) Phosphorous availability and implications for life on ocean worlds. Nature Communications 14:2388 https://doi.org/10.1038/s41467-023-37770-9
German, C.R., Blackman, D.K., Fisher, A.T., Girguis, P.R., Hand, K.P., Hoehler, T.M., Huber, J.A., Marshall, J.C., Pietro, K. R., Seewald, J.S., Shock, E.L., Sotin, C., Thurnherr, A.M., and Toner, B.M. (2022) Ocean system science to inform the exploration of ocean worlds. Oceanography https://doi.org/10.5670/oceanog.2021.411
Neveu M. Desch S.J., Shock E.L. Glein C.R. (2015) Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus 246, 48-64.
Pappalardo, R.T., Vance, S., Bagenal, F., Bills, B.G., Blaney, D.L., Blankenship, D.D., Brinckerhoff, W.B., Connerney, J.E.P., Hand, K.P., Hoehler, T.M., Kurth, W.S., McGrath, M.A., Mellon, M.T., Moore, J.M., Patterson, G.W., Prockter, L.M., Senske, D.A., Shock, E.L., Smith, D.E. (2013) Science potential from a Europa lander. Astrobiology 13, 740-773.
Glein, C. and Shock, E.L. (2013) A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan. Geochim. Cosmochim. Acta 115, 217-240.
Glein, C.R. and Shock, E.L. (2010) Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophysical Research Letters L09204, doi:10.1029/2010 GL042446.
Glein, C.R., Desch, S.J., and Shock, E.L. (2009) The absence of endogenic methane on Titan and its implications for the origin of atmospheric nitrogen. Icarus 204, 637-644.
Glein, C.R., Zolotov, M.Yu., and Shock, E.L. (2008) The oxidation state of hydrothermal systems on early Enceladus. Icarus 197, 157-163.
Zolotov, M.Yu. and Shock, E.L. (2004) A model for low temperature biogeochemistry of sulfur, carbon and iron on Europa. Jour. Geophys. Res. 109, E06003, doi:10.1029/ 2003JE002194.
Zolotov, M.Yu. and Shock, E.L. (2001) The composition and stability of salts on the surface of Europa and their oceanic origin. Jour. Geophys. Res. 106, 32815-32828.
Zolotov, M.Yu. and Shock, E.L. (2001) Stability of condensed hydrocarbons in the solar nebula. Icarus 150, 323-337.
Organic Synthesis and Aqueous Alteration in the Solar System
Shock, E., Bockisch, C., Estrada, C., Fecteau, K., Gould, I., Hartnett, H., Johnson, K., Robinson, K., Shipp, J., and Williams, L. (2019) Earth as organic chemist. In: Deep Carbon, Past to Present (eds.: B. Orcutt, I. Daniel, R. Dasgupta) Cambridge University Press pp. 415-446.
Pizzarello S., Shock E. (2017) Carbonaceous chondrite meteorites: The chronicle of an evolutionary path between stars and life. Origins of Life and Evolution of the Biosphere 47, 249-260, doi:10.1007/s11084-016-9530-1.
Shock, E.L., Canovas, P., Yang, Z., Boyer, G., Johnson, K., Robinson, K., Fecteau, K., Windman, T., and Cox, A. (2013) Thermodynamics of organic transformations in hydrothermal fluids. Reviews in Mineralogy & Geochemistry 76, 311-350.
Pizzarello S., and Shock E. (2010) The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. In: The Origins of Life (D. Deamer and J. Shostak, eds.) Cold Spring Harbor Press. pp. 89-107.
Zolotov, M.Yu., Mironenko, M.V. and Shock, E.L. (2006) Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteoritics & Planetary Science 41, 1775-1796.
Zolotov, M.Yu. and Shock, E.L. (2005) Formation of jarosite-bearing deposits through aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophysical Research Letters 32, L21203, doi:10.1029/2005GL024253.
Schulte, M., and Shock, E. (2004) Coupled organic synthesis and mineral alteration on meteorite parent bodies. Meteoritics and Planetary Science 39, 1577-1590.
Zolotov, M.Yu. and Shock, E.L. (2003) Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Jour. Geophys. Res. 108, No. E4, 5022, doi:10.1029/2002JE001966.
Zolotov, M.Yu. and Shock, E.L. (2000) An abiotic origin for hydrocarbons in the Allan Hills 84001 martian meteorites through cooling of magmatic and impact-generated gases. Meteoritics Planet. Sci. 35, 629-638.
Zolotov, M.Yu. and Shock, E. L. (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. Jour. Geophys. Res. 105, 539-559.
Zolotov, M. and Shock, E. (1999) Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars. Jour. Geophys. Res. 104, 14033-14049.
Shock, E. L. and Schulte, M. D. (1998) Organic synthesis during fluid mixing in hydrothermal systems. Jour. Geophys. Res. 103, 28513-28527.
Shock, E.L., McCollom, T. and Schulte, M.D. (1998) The emergence of metabolism from within hydrothermal systems. In: Thermophiles: the keys to molecular evolution and the origin of life? (Wiegel and Adams, eds.) Taylor & Francis, London, 59-76.
Amend, J.P. and Shock, E.L. (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281, 1659-1662.
McCollom, T.M., and Shock, E.L. (1998) Fluid-rock interactions in the lower oceanic crust: Thermodynamic models of hydrothermal alteration. Jour. Geophys. Res. 103, 547-575.
Griffith, L.L. and Shock, E.L. (1997) Hydrothermal hydration of martian crust: Illustration via geochemical model calculations. Jour. Geophys. Res. 102, 9135-9143.
Schulte, M.D., and Shock, E.L. (1995) Thermodynamics of Strecker synthesis in hydrothermal systems. Origins of Life and Evolution of the Biosphere 25, 161-173.
Griffith, L.L., and Shock, E.L. (1995) A geochemical model for the formation of hydrothermal carbonate on Mars. Nature 377, 406-408.
Shock, E.L., and McKinnon, W.B. (1993) Hydrothermal processing of cometary volatiles--Applications to Triton. Icarus 106, 464-477.
Shock, E.L., and Schulte, M.D. (1990) Amino acid synthesis in carbonaceous meteorites by aqueous alteration of polycyclic aromatic hydrocarbons. Nature, 343, 728-731.
Shock, E.L., and Schulte, M.D. (1990) Summary and implications of reported amino acid concentrations in the Murchison meteorite. Geochim. Cosmochim. Acta, 54, 3159-3173.
Shock, E.L. (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins of Life and Evolution of the Biosphere, 20, 331-367.
Organic Transformations within Earth
Shock, E., Bockisch, C., Estrada, C., Fecteau, K., Gould, I., Hartnett, H., Johnson, K., Robinson, K., Shipp, J., and Williams, L. (2019) Earth as organic chemist. In: Deep Carbon, Past to Present (eds.: B. Orcutt, I. Daniel, R. Dasgupta) Cambridge University Press pp. 415-446.
Shock, E.L., Canovas, P., Yang, Z., Boyer, G., Johnson, K., Robinson, K., Fecteau, K., Windman, T., and Cox, A. (2013) Thermodynamics of organic transformations in hydrothermal fluids. Reviews in Mineralogy & Geochemistry 76, 311-350.
Shock, E.L. (2000) Thermodynamic response of organic compounds in geochemical processes of sedimentary basins. Reviews in Economic Geology, Vol. 9. Ore Genesis and Exploration: The Roles of Organic Matter (eds: T.H. Giordano, R.M. Kettler, S.A. Wood) Society of Economic Geologists, Inc., Littleton, CO, pp. 105-117.
Shock, E.L. (1994) Application of thermodynamic calculations to geochemical processes involving organic acids. In: The Role of Organic Acids in Geological Processes (eds.: M. Lewan and E. Pittman) Springer-Verlag pp. 270-318.
Shock, E.L. (1993) Hydrothermal dehydration of aqueous organic compounds. Geochim. Cosmochim. Acta. 57, 3341-3349.
Helgeson, H.C., Knox, A.M., Owens, C.E., and Shock, E.L. (1993) Petroleum, oil field waters and authigenic mineral assemblages: Are they in metastable equilibrium in hydrocarbon reservoirs? Geochim. Cosmochim. Acta 57, 3295-3339.
Shock, E.L. (1992) Stability of peptides in high temperature aqueous solutions. Geochim. Cosmochim. Acta, 56, 3481-3491.
Shock, E.L. (1990) Do amino acids equilibrate in hydrothermal fluids? Geochim. Cosmochim. Acta, 54, 1185-1189.
Shock, E.L. (1989) Corrections to "Organic acid metastability in sedimentary basins." Geology, 17, 572-573.
Shock, E.L. (1988) Organic acid metastability in sedimentary basins. Geology, 16, 886-890.
Serpentinization and Habitability
Howells, A.E.G., De Martini, F., Gile, G., Shock, E. L. (2023) An examination of protist diversity in serpentinization-hosted ecosystems of the Samail Ophiolite of Oman. Frontiers in Microbiology 14:1139333. https://doi.org/10.3389/fmicb.2023.1139333
Ely, T. Leong, J.A.M., Canovas, P.C III, and Shock, E. L. (2023) Huge variation in H2 generation during seawater alteration of ultramafic rocks. Geochemistry, Geophysics, Geosystems, 24, e2022GC010658. https://doi.org/10.1029/2022GC010658
Howells, A., Leong, J., Ely, T., Santana, M., Robinson, K., Esquivel Elizondo, S., Cox, A., Poret-Peterson, A., Krajmalnik-Brown, R., and Shock, E. (2022) Energetically informed niche models of hydrogenotrophs detected in serpentinized fluids of the Samail ophiolite of Oman. JGR Biogeosciences 127, e2021JG006317.
Leong, J.A.M., Ely, T. and Shock, E.L. (2021) Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere. Nature Communications 12, 7341 (2021). https://doi.org/10.1038/s41467-021-27589-7.
Leong, J.A.M, Howells, A.H., Robinson, K.J., Cox, A., Debes, R.V., Fecteau, K., Prapaipong, P., and Shock, E.L. (2021) Theoretical predictions vs. environmental observations on serpentinization fluids: Lessons from the Samail ophiolite in Oman. Jour. Geophys. Res. 126, e2020JB020756.
Newman, S.A., Lincoln, S.A., O’Reilly, S., Liu, X., Shock, E.L., Kelemen, P.B., and Summons, R.E. (2020) Lipid biomarker record of the serpentinite-hosted ecosystem of the Samail ophiolite, Oman and implications for the search for biosignatures on Mars. Astrobiology 20, 830-845.
Leong J.M., and Shock E.L. (2020) Thermodynamic constraints on the geochemistry of low-temperature, continental, serpentinization-generated fluids. American Journal of Science 320, 185-235, doi: 10.2475/03.2020.01.
Meyer-Dombard D.R., Woycheese K.M., Yargıçoğlu E.N., Cardace D. Shock E.L., Güleçal-Pektas Y., Temel M. (2015) High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimaera), Turkey. Frontiers in Microbiology 5:723 10.3389/fmicb.2014.00723.
Kelemen, P., Al Rajhi, A., Godard, M., Ildefonse, B., Koepke, J., MacLeod, C., Manning, C., Michibayashi, K., Nasir, S., Shock, E., Takazawa, E. and Teagle, D. (2013) Scientific Drilling and Related Research in the Samail Ophiolite, Sultanate of Oman. Scientific Drilling, No. 15, March 2013, 64-71, doi:10.2204/iodp.sd.15.10.2013
Paukert, A.P., Matter, J.M., Kelemen, P.B., Shock, E.L. and Havig, J.R. (2012) Reactive transport modeling of enhanced in situ CO2 mineralization in the peridotite of the Samail ophiolite aquifer, Sultanate of Oman. Chemical Geology 330-331, 86-100.
Submarine Hydrothermal Systems
Milesi, V., Shock, E., Seewald, J., Trembath-Reichert, E., Sylva, S.P. Huber, J.A., Lim, D.S.S. and German, C.R. (2023) Multiple parameters enable deconvolution of water-rock reaction paths in low-temperature vent fluids of the Kama’ehuakanaloa (Lō`ihi) seamount. Geochim. Cosmochim. Acta 348, 54-67. https://doi.org/10.1016/j.gca.2023.03.013
Dick, J.M. and Shock, E.L. (2021) The release of energy during protein synthesis at ultramafic-hosted submarine hydrothermal ecosystems. JGR Biogeosciences 126, e2021JG006436.
Milesi, V., Shock, E., Ely, T., Lubetkin, M, Sylva, S.P., Mirmalek, Z., German, C.R., and Lim, D. S. S. (2021) Geochemical modeling as a guiding tool during exploration of the Sea Cliff hydrothermal field, Gorda Ridge. Planetary and Space Science 197, 105151; doi.org/10.1016/j.pss.2020.105151.
Lim, D.S.S., Raineault, N.A., Breier, J.A., Chan, E., Chernov, J., Cohen, T., Deans, M., Garcia, A., German, C., Hauer, M., Hu, S., Huber, J., Kane, R., Kobs Nawotniak, S., Lees, D., Lowe, J., Lubetkin, M., Marsh, L., Milesi, V., Miller, M., Mirmalek, Z., Saunders, M., Sharif, K., Shields, A., Shock, E., Smith, A., and Sylva, S. (2020) SUBSEA 2019 Expedition to the Gorda Ridge. Oceanography 33 supplement, 36-37.
Lim, D.S.S., Raineault, N.A., Alanis, B., Brier, J.A., Chan, E., Emerson, D., Garcia, A., German, C.R., Huber, J.A., Kobs Nawotniak, S., Milesi, V., Shields, A., Shock, E., Smith, A., Seewald, J.S., Trembath-Reichert, E., Mirmalek, Z., Miller, M.J., Cohen, T., Lees, D., and Deans, M. (2019) SUBSEA 2018 Expedition to the Lō`ihi Seamount, Hawai’i. Oceanography 32, supplement, 48-49.
Shock, E.L. and Canovas P.C. (2010) The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids 10, 161-192.
Shock, E.L. and Holland, M. E. (2004) Geochemical energy sources that support the subseafloor biosphere. The Subseafloor Biosphere at Mid-Ocean Ridges. (Geophysical Monograph 144, Eds: W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J. A. Baross, S.C. Cary) American Geophysical Union, pp. 153-165.
Wetzel, L.R., Raffensperger, J.P., and Shock, E.L. (2001) Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models. Jour. Volcanology and Geothermal Res. 110, 319-342.
Wetzel, L.R. and Shock, E.L. (2000) Distinguishing ultramafic- from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. Jour. Geophys. Res. 105, 8319-8340.
Amend, J.P. and Shock, E.L. (2000) Thermodynamics of amino acid synthesis in hydrothermal systems on the early Earth. In: Perspectives in Amino Acid and Protein Geochemistry, (eds: G.A. Goodfriend, M.J. Collins, M.L. Fogel, S.A. Macko, and J.F. Wehmiller), Oxford University Press, 23-40.
Shock, E. L. and Schulte, M. D. (1998) Organic synthesis during fluid mixing in hydrothermal systems. Jour. Geophys. Res. 103, 28513-28527.
Amend, J.P. and Shock, E.L. (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281, 1659-1662.
Shock, E.L. (1996) Hydrothermal systems as environments for the emergence of life. In: Evolution of Hydrothermal Ecosystems on Earth (and Mars?) Wiley, Chichester (Ciba Foundation Symposium 202) p. 40-60.
Shock, E.L. (1992) Chemical environments in submarine hydrothermal systems. In: Marine Hydrothermal Systems and the Origin of Life, (ed. N. Holm) a special issue of Origins of Life and Evolution of the Biosphere, 22, 67-107.
Thermodynamic Data Summaries, Critiques, and Estimation Methods
Robinson, K., Seewald, J.S., Sylva, S.P., Fecteau, K.M. and Shock, E.L. (2024) Thermodynamic property estimations for aqueous primary, secondary, and tertiary alkylamines, benzylamines, and their corresponding aminiums across temperature and pressure are validated by measurements from experiments. Geochim. Cosmochim. Acta 372, 62-80. https://doi.org/10.1016/j.gca.2024.03.013
Canovas P.C. III, Shock E.L. (2016) Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle. Geochim. Cosmochim. Acta 195, 293-322.
Plyasunov A.V., Shock E.L., and O’Connell J.P. (2006) Corresponding-states correlations for estimating partial molar volumes of nonelectrolytes at infinite dilution in water over extended temperature and pressure ranges. Fluid Phase Equilibria 247, 18-31.
Plyasunov, A.V., Plyasunova, N.V., and Shock, E.L. (2006) Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 4. Aliphatic nitriles and dinitriles. Journal of Chemical and Engineering Data 51, 1481-1490.
Plyasunov, A.V., Plyasunova, N.V., and Shock, E.L. (2006) Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 3. Aliphatic monoethers, diethers, polyethers. Journal of Chemical and Engineering Data 51, 276-290, 10.1021/je050390a.
Plyasunova, N.V., Plyasunov, A.V., and Shock, E.L. (2005) Group contribution values for the thermodynamic functions of hydration at 298.15 K, 0.1 MPa. 2. Aliphatic thiols, alkyl sulfides, and polysulfides. Journal of Chemical and Engineering Data 50, 246-253, 10.1021/je0497045.
Plyasunov, A.V., Plyasunova, N.V. and Shock, E.L. (2004) Group contribution values for the thermodynamic functions of hydration of aliphatic esters at 298.15K and 0.1Mpa. Journal of Chemical and Engineering Data 49, 1152-1167, 10.1021/je049850a.
Plyasunov, A.V. and Shock, E.L. (2004) Prediction of the Krichevskii parameter for volatile nonelectrolytes in water. Fluid Phase Equilibria 222-223, 19-24.
Plyasunova, N.V., Plyasunov, A.V., and Shock, E.L. (2004) Database of thermodynamic properties for aqueous organic compounds. International Journal of Thermophysics, 25, 351-360.
Plyasunov, A.V. and Shock, E.L. (2003) Prediction of the vapor-liquid distribution constants for volatile nonelectrolytes in H2O up to the critical temperature of water. Geochim. Cosmochim. Acta 67, 4981-5009.
Plyasunov, A.V., Shock, E.L. and Wood, R.H. (2003) Second cross virial coefficients for interactions involving water. Correlations and group contribution values. Journal of Chemical and Engineering Data 48, 1463-1470.
Plyasunov, A.V. and Shock, E.L. (2003) Second cross virial coefficients for interactions involving water. Critical data compilation. Journal of Chemical and Engineering Data 48, 808-821.
Sakane, S., Liu, W. Doren, D.J., Shock, E.L. and Wood, R.H. (2001) Prediction of the Gibbs energies and an improved equation of state for water at extreme conditions from ab initio energies with classical simulations. Geochim. Cosmochim. Acta 65, 4067-4075.
Prapaipong, P. and Shock, E.L. (2001) Estimation of standard-state entropies of association for aqueous metal—organic complexes and chelates at 25°C and 1 bar. Geochim. Cosmochim. Acta 65, 3931-3953.
Schulte, M.D., Shock, E.L., and Wood, R.H. (2001) The temperature dependence of the standard state thermodynamic properties of aqueous nonelectrolytes. Geochim. Cosmochim. Acta 65, 3919-3930.
Plyasunov, A.V. and Shock, E.L. (2001) Correlation strategy for determining the parameters of the revised Helgeson-Kirkham-Flowers model for aqueous nonelectrolytes. Geochim. Cosmochim. Acta 65, 3879-3900.
Plyasunov, A.V. and Shock, E.L. (2001) Group contribution values of the infinite dilution thermodynamic functions of hydration for aliphatic non-cyclic hydrocarbons, alcohols and ketones at 298.15 K and 0.1 MPa. Journal of Chemical and Engineering Data 46, 1016-1019.
Plyasunov, A.V. and Shock, E.L. (2001) The Krichevskii parameter for aqueous nonelectrolytes. Jour. Supercritical Fluids 20, 91-103.
Plyasunov, A.V., O’Connell, J.P., Wood, R.H. and Shock, E.L. (2001) Semiempirical equation of state for the infinite dilution thermodynamic functions of hydration of nonelectrolytes over wide ranges of temperature and pressure. Fluid Phase Equilibria 183/184, 133-142.
Plyasunov, A.V. and Shock, E.L. (2000) Standard state Gibbs energies of hydration of hydrocarbons at elevated temperatures as evaluated from experimental phase equilibria studies. Geochim. Cosmochim. Acta 64, 2811-2833.
Plyasunov, A.V., O’Connell, J.P., Wood, R.H. and Shock, E.L. (2000) Infinite dilution partial molar properties of aqueous solutions on nonelectrolytes. II. Equations for the standard thermodynamic functions of hydration of volatile nonelectrolytes over wide ranges of conditions including subcritical temperatures. Geochim. Cosmochim. Acta 64, 2779-2795.
Plyasunov, A.V. and Shock, E.L. (2000) Thermodynamic functions of hydration of hydrocarbons at 298.15 K and 0.1 MPa. Geochim. Cosmochim. Acta 64, 439-468.
Schulte, M., Shock, E., Obsil, M., and Majer, V. (1999) Volumes of aqueous alcohols, ethers, and ketones to T = 523K and p = 28 MPa. Jour. Chem. Thermodynamics 31, 1195-1229.
Murphy, W. M. and Shock, E.L. (1999) Environmental aqueous geochemistry of actinides. Reviews in Mineralogy 38, 221-253.
Haas, J.R and Shock, E.L. (1999) Halocarbons in the environment: Estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochim. Cosmochim. Acta 63, 3429-3441.
Prapaipong, P., Shock, E.L. and Koretsky, C.M. (1999) Metal-organic complexes in geochemical processes: Temperature dependence of standard partial molal thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochim. Cosmochim. Acta 63, 2547-2577.
Sassani, D.C., and Shock, E.L. (1998) Solubility and transport of platinum-group elements in supercritical fluids: Summary and estimates of thermodynamic properties for Ru, Rh, Pd, and Pt solids, aqueous ions and aqueous complexes. Geochim. Cosmochim. Acta 62, 2643-2671.
Shock, E.L., Sassani, D.C. and Betz, H. (1997) Uranium in geologic fluids: Estimates of oxidation potentials and hydrolysis constants at high temperatures and pressures. Geochim. Cosmochim. Acta 61, 4245-4266.
Dale, J.D., Shock, E.L., Macleod, G., Aplin, A.C. and Larter, S.R. (1997) Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures. Geochim. Cosmochim. Acta 61, 4017-4024.
Sverjensky D.A., Shock, E.L., and Helgeson, H.C. (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim. Cosmochim. Acta 61, 1359-1412.
Shock, E.L., Sassani, D.C., Willis, M. and Sverjensky, D.A. (1997) Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochim. Cosmochim. Acta 61, 907-950.
Haas, J.R., Shock, E.L., and Sassani, D.C. (1995) Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the REE at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329-4350.
Oelkers, E.H., Helgeson, H.C., Shock, E.L., Sverjensky, D.A., Johnson, J.W., and Pokrovskii, V. (1995) Summary of the apparent standard partial molal Gibbs free energies of formation of aqueous species, minerals, and gases at pressures from 1 to 5000 bars and temperatures from 25° to 1000°C. Journal of Physical and Chemical Reference Data 24, 1401-1560.
Shock, E.L. (1995) Organic acids in hydrothermal solutions: Standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. American Journal of Science 295, 496-580.
Shock, E.L., and Koretsky, C.M. (1995) Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 1497-1532.
Shock, E.L. (1994) Erratum to D. C. Sassani and E.L. Shock (1992) “Estimation of standard partial molal entropies of aqueous ions at 25°C and 1 bar” Geochim. Cosmochim. Acta 58, 2756-2758.
Shock, E.L., and Koretsky, C.M. (1993) Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochim. Cosmochim. Acta 57, 4899-4922.
Schulte, M.D., and Shock, E.L. (1993) Aldehydes in hydrothermal solutions: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim. Cosmochim. Acta 57, 3835-3846.
Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., and Helgeson, H.C. (1992) Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures: Effective electrostatic radii, dissociation constants, and standard partial molal properties to 1000°C and 5 kb. J. Chem. Soc., Faraday Trans. 88, 803-826.
Sassani, D.C., and Shock, E.L. (1992) Estimation of standard partial molal entropies of aqueous ions at 25°C and 1 bar. Geochim. Cosmochim. Acta, 56, 3895-3908.
Sassani, D.C., and Shock, E.L. (1990) Speciation and solubility of palladium in aqueous magmatic-hydrothermal solutions. Geology, 18, 925-928.
Shock, E.L., and Helgeson, H.C. (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Geochim. Cosmochim. Acta, 54, 915-945.
Shock, E.L., Helgeson, H.C., and Sverjensky, D.A. (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta, 53, 2157-2183.
Helgeson, H.C., Shock, E.L., Sverjensky, D.A., and Oelkers, E.H. (1988) Calculation of equilibrium constants for reactions among minerals, gases, and aqueous species in geothermal systems. Rendiconti della Societa Italiana di Mineralogia e Petrologia, 43, 1159-1174.
Helgeson, H.C., Oelkers, E.H., Shock, E.L., and Sverjensky, D.A. (1988) Calculation of the thermodynamic and transport properties of aqueous species at supercritical temperatures and pressures. Proceedings of the International Symposium on Supercritical Fluids, (M. Perrut, ed., Société Française de Chimie) Tome 1, 279-294.
Shock, E.L., and Helgeson, H.C. (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim. Cosmochim. Acta, 52, 2009-2036.
Wild Speculations, Soils, Wetlands, and Urban Ecosystems
Navrotsky, A., Hervig, R., Lyons, J., Seo, D., Shock, E., and Voskanyan, A. (2021) Cooperative formation of porous silica and peptides in the prebiotic Earth. PNAS 118, e2021117118.
Chapman E.J., Childers D.L. Shock E.L. Turetsky M.R. (2016) A thermodynamic analysis of ecosystem development in northern wetlands. Wetlands 36, 1143-1153.
Marusenko, Y., Shipp, J., Hamilton, G.A., Morgan, J.L.L., Keebaugh, M., Hill, H., Dutta, A., Zhuo, X., Upadhyay, N., Hutchings, J., Herckes, P., Anbar, A., Shock, E., and Hartnett, H. (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environmental Pollution 174, 150-156.
Zhuo, X., Boone, C. and Shock, E. (2012) Soil lead distribution and environmental justice in the Phoenix metropolitan area. Environmental Justice 5, 206-213.
McKay, C.P., Schulze-Makuch, D., Boston, P.J., ten Kate, I.R., Davila, A.F. and Shock, E. (2011) The next phase in our search for life: An expert discussion. Astrobiology 11, DOI: 10.1089/ast.2010.1122.
Williams, L., Holloway, J., Canfield, B., Glein, C., Dick, J., Hartnett, H., Shock, E. (2011) Birth of biomolecules from the warm wet sheets of clays near spreading centers. In: Suzanne D. Golding, Miryam Glikson (eds.) Earliest Life on Earth: Habitats, Environments and Methods of Detection. Springer Science. New York. pp 79-112.
Westerhoff, P., Prapaipong, P., Shock, E. and Hillaireau, A. (2008) Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Research 42, 551-556.
Prapaipong, P., Morris, J.D. Lindvall, R.E., Enssle, C. and Shock, E.L. (2008) Rapid transport of anthropogenic lead through soils in southeast Missouri. Applied Geochemistry 23, 2156-2170.
Stueber, A.M., Shock, E.L., Abendroth, M.T., Calero, G.A., and Torrico, A.C. (2003) Water quality in the karst terrain of southwestern Illinois. In: At the Confluence: Rivers, Floods, and Water Quality in the St. Louis Region eds: (R.E. Criss and D.A. White) 200-224.
Shock, E.L., Carbery, K., Noblitt, N., Schnall, B., Kogan, P., Rovito, S., Berg, A. and Liang, J. (2003) Water and solute sources in an urban stream, River des Peres, St. Louis, Missouri,. In: At the Confluence: Rivers, Floods, and Water Quality in the St. Louis Region eds: (R.E. Criss and D.A. White) 150-160.
Shock, E.L. (2002) Seeds of life? Nature 416, 380-381.
Stueber, A.M., Thompson, E.S., Criss, R.E. and Shock, E.L. (2001) Land use, hydrology and water quality in a karst watershed: Resolution of water quality issues at the local level. Proceedings of the annual Illinois Groundwater Consortium Conference, available online at: www.siu.edu/worda/igc/proceedings/01/stueber.pdf
Criss, R.E. and Shock, E.L. (2001) Flood enhancement through flood control. Geology 29, 875-878.
Shock, E. (2000) Organic acids. Oxford Companion to the Earth (P.L. Hancock and B. Skinner, eds), Oxford University Press. p.761.
Shock, E. (2000) Origin of life: Geochemical constraints. Oxford Companion to the Earth (P.L. Hancock and B. Skinner, eds), Oxford University Press. pp.763-766.
Shock, E. L. (1998) Co-transport of metals and organic compounds in geochemical, biochemical and environmental processes. In: (Marini, L. and Ottonello, G., eds), Proceedings of the Rome Seminar on Environmental Geochemistry, Pacini Editore, 73-102.
Jakosky, B.M. and Shock, E.L. (1998) The biological potential of Mars, the early Earth and Europa. Jour. Geophys. Res. 103, 19359-19364.
Shock, E.L. (1997) High temperature life without photosynthesis as a model for Mars. Jour. Geophys. Res. 102. 23,687-23,694.
Shock, E.L. (1995) Methane: An open or shut case? Nature 378, 338-339.
Shock, E.L. (1994) Catalysing methane production. Nature, 368, 499-500.
Shock, E.L. (1994) Hydrothermal systems and the emergence of life. Geotimes, 39, 12-14.
Shock, E.L. (1992) Hydrothermal organic synthesis experiments. In: Marine Hydrothermal Systems and the Origin of Life, (ed. N. Holm) a special issue of Origins of Life and Evolution of the Biosphere, 22, 135-146.
Holm, N.G., Cairns-Smith, A.G., Daniel, R.M., Ferris, J.P., Hennet, R.J.-C., Shock, E.L., Simoneit, B.R.T. and Yanagawa, H. (1992) Future Research. In: Marine Hydrothermal Systems and the Origin of Life, (ed. N. Holm) a special issue of Origins of Life and Evolution of the Biosphere, 22, 181-190.