[Xu96] Xu, Jinxi, and W. Bruce Croft. Query expansion using local and global document analysis. In Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 4-11. ACM, 1996.
[Zhou03] Zhou, X. S., & Huang, T. S. (2003). Relevance feedback in image retrieval: A Comprehensive review. Multimedia systems, 8(6), 536-544
[Kwok01] Kwok, Cody, Oren Etzioni, and Daniel S. Weld. Scaling question answering to the Web. ACM Transactions on Information Systems (TOIS) 19, no. 3 (2001): 242-262.
[Riezler07] Riezler, Stefan, Alexander Vasserman, Ioannis Tsochantaridis, Vibhu Mittal, and Yi Liu. Statistical machine translation for query expansion in answer retrieval. In ANNUAL MEETING-ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, vol. 45, no. 1, p. 464. 2007.
[Ren09] Ren, W., Singh, S., Singh, M., & Zhu, Y. S. (2009). State-of-the-art on spatio-temporal information-based video retrieval. Pattern recognition, 42(2), 267-282.
[Caicedo11] Caicedo, J. C., González, F. A., & Romero, E. (2011). Content-based histopathology image retrieval using a kernel-based semantic annotation framework. Journal of Biomedical Informatics, 44(4), 519-528.
[Steyvers06] M. Steyvers and T. Griffiths, Probabilistic Topic Models, in Latent Semantic Analysis: A Road to Meaning, vol. 22, no. 7, T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, Eds. 2006.
[Andrzejewski11] D. Andrzejewski and D. Buttler, Latent topic feedback for information retrieval, Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’11, p. 600, 2011.
[Atrey10] P. K. Atrey, M. A. Hossain, A. El Saddik, and M. S. Kankanhalli, Multimodal fusion for multimedia analysis: a survey, Multimedia Systems, vol. 16, no. 6, pp. 345–379, Apr. 2010.
[Escalante11] H. J. Escalante, M. Montes, and E. Sucar, Multimodal indexing based on semantic cohesion for image retrieval, Information Retrieval, vol. 15, no. 1, pp. 1–32, Jun. 2011.
[Gates09] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, Building a High-Level Dataflow System on top of Map-Reduce : The Pig Experience, Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1414–1425, 2009.
[Edelman07] B. Edelman, M. Ostrovsky, and M. Schwarz, Internet advertising and the generalized second price auction: Selling billions of dollars worth of keywords, American Economic Review., vol. 97, no. 1, pp. 242–259, 2007.
[Graepel10] T. Graepel, Web-scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft’s Bing search engine,” in Proceedings of the 27th international conference on machine learning, 2010, pp. 13–20.
[Wang12] C.-J. Wang, Y.-W. Lin, M.-F. Tsai, and H.-H. Chen, Mining subtopics from different aspects for diversifying search results, Information Retrieval, Dec. 2012.
[Kato13] M. P. Kato, T. Sakai, and K. Tanaka, When do people use query suggestion? A query suggestion log analysis, Information Retrieval, Jan. 2013.
[Yue07] Y. Yue, T. Finley, F. Radlinski, and T. Joachims, “A support vector method for optimizing average precision,” in Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval - SIGIR ’07, 2007, pp. 271–278.
[Agrawal13] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma, “Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages,” in Proceedings of the International World Wide Web Conference, 2013, pp. 13–23.