Black WB, Perea S, and Li H. Design, construction, and application of noncanonical redox cofactors. Current Opinion in Biotechnology, 2023. https://doi.org/10.1016/j.copbio.2023.103019

Aspacio D, Zhang Y, Cui Y, King E, Black WB, Perea S, Luu E, Siegel JB, and Li H. Shifting Redox Reaction Equilibria on Demand Using an Orthogonal Redox Cofactor. BioRxiv (Preprint), 2023 http://biorxiv.org/content/early/2023/08/30/2023.08.29.555398

King E, Maxel S, Zhang Y, Kenney K, Weiss GA, Luo R, and Li H. Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase. Nature Communications, 2022 https://doi.org/10.1038/s41467-022-35021-x

Zhang L, King E, Black WB, Heckmann CM, Wolder A, Cui Y, Nicklen F, Siegel JB, Luo R, Paul CE, and Li H. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform. Nature Communications, 2022. https://doi.org/10.1038/s41467-022-32727-w 

King E, Cui Y, Aspacio D, Nicklen F, Zhang L, Maxel S, Luo R, Siegel JB, Aitchison E, and Li H. Engineering Embden–Meyerhof–Parnas Glycolysis to Generate Noncanonical Reducing Power. ACS Catalysis 2022. https://doi.org/10.1021/acscatal.2c01837 

Black WB and Li H. Cell-Free Noncanonical Redox Cofactor Systems. In: Karim A.S., Jewett M.C. (eds) Cell-Free Gene Expression. Methods in Molecular Biology, vol 2433. 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1998-8_11 

Maxel S, Saleh S, King E, Aspacio D, Zhang L, Luo R, Li H. Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst.  ACS Synth. Biol. 2021,  doi: 10.1021/acssynbio.1c00258 

King E, Qi R, Li H, Luo R, Aitchison E. Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations. Journal of Chemical Theory and Computation. 2021

King E, Aitchison E, Li H, Luo R. Recent Developments in Free Energy Calculations for Drug Discovery. Frontiers in Molecular Biosciences, 2021, doi: 10.3389/fmolb.2021.712085 

Maxel S, King E, Zhang Y, Luo R, and Li H. Leveraging Oxidative Stress to Regulate Redox Balance-Based, In Vivo Growth Selections for Oxygenase Engineering. ACS Synth. Biol. 2020,  doi: 10.1021/acssynbio.0c00380

King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development. Current Opinion in Biotechnology 2020, doi: 10.1016/j.copbio.2020.08.005

Maxel S, Zhang L, King E, Acosta AP, Luo R, Li H. In Vivo, High-Throughput Selection of Thermostable Cyclohexanone Monooxygenase (CHMO). Catalysts 2020, doi: 10.3390/catal10080935

Richardson KN, Black WB, Li H. Aldehyde production in crude lysate-based and whole-cell biotransformation using a noncanonical redox cofactor system. ACS Catalysis 2020.doi: 10.1021/acscatal.0c03070

Black WB, Aspacio D, Bever D, King E, Zhang L, Li H. Metabolic engineering of Escherichia coli for optimized biosynthesis of nicotinamide mononucleotide, a noncanonical redox cofactor. Microbial Cell Factories 2020. doi: 10.1186/s12934-020-01415-z

Maxel S, Aspacio D, King E, Zhang L, Acosta AP, Li H. A growth-based, high-throughput selection platform enables remodeling of 4-hydroxybenzoate hydroxylase active site. ACS Catalysis 2020. doi: 10.1021/acscatal.0c01892

Black WB, Zhang L, Mak WS, Maxel S, Cui Y, King E, Fong B, Martinez AS, Siegel JB, and Li H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nature Chemical Biology 2019, doi: 10.1038/s41589-019-0402-7.

Black WB, King  E, Wang Y, Jenic A, Rowley AT, Seki K, Luo R, Li H, Engineering a Coenzyme A detour to expand the product scope and enhance the selectivity of the Ehrlich pathway. ACS Synth. Biol. 2018,  doi: 10.1021/acssynbio.8b00358

Zhang L, King E, Luo R, Li H. Development of a High-Throughput, In Vivo Selection Platform for NADPH-Dependent Reactions Based on Redox Balance Principles. ACS Synth. Biol. 2018. doi:10.1021/acssynbio.8b00179 

Black WB, Zhang L, Kamoku C, Liao JC, Li H: Rearrangement of Coenzyme A-acylated carbon chain enables synthesis of isobutanol via a novel pathway in Ralstonia eutropha. ACS Synth. Biol., 2018, DOI: 10.1021/acssynbio.7b00409

Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG: Replacement of 2’-deoxycytidine by 2’-deoxycytidine analogs in the E. coli genome. J. Am. Chem. Soc., 2016, 138(43):14230-14233

Mehta AP, Li H, Reed SA, Supekova L, Javahishvili T, Schultz PG: Replacement of Thymidine by a Modified Base in the Escherichia coli Genome. J. Am. Chem. Soc., 2016, 138 (23), pp 7272–7275

Li H, Liao JC: A synthetic anhydrotetracycline-controllable gene expression system in Ralstonia eutropha H16. ACS Synth. Biol., 2015. 4 (2), pp 101–106.

Li H, Liao JC: Development of an NADPH-dependent homophenylalanine dehydrogenase by protein engineering. ACS Synth. Biol., 2014. 3 (1), pp 13–20

Li H, Liao JC: Biological Conversion of CO2 to Photosynthetic Fuels and Electrofuels. Energy & Environmental Science. 2013. 6, 2892-2899.

Li H, Liao JC: Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microbial Cell Factories. 2013. 12: 4

Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC: Integrated electromicrobial conversion of CO2 to higher alcohols. Science. 2012, 335 (6076):1596. 

Marcheschi RJ*, Li H*, Zhang K*, Noey EL, Kim S, Chaubey A, Houk KN, Liao JC: A synthetic recursive "+1" pathway for carbon chain elongation. ACS Chem Biol. 2012, 7(4):689-697. (*equal contribution)

Zhang K, Li H, Cho KM, Liao JC: Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc Natl Acad Sci USA. 2010, 107(14):6234-6239.

Li H, Cann AF, Liao JC: Biofuels: biomolecular engineering fundamentals and advances. Annu Rev Chem Biomol Eng. 2010, 1:19-36.

Li H, Guo M: Protein degradation in Parkinson disease revisited: it's complex. J Clin Invest. 2009, 119 (3):442-445. 

Mei Z, Wang F, Qi Y, Zhou Z, Hu Q, Li H, Wu J, Shi Y: Molecular determinants of MecA as a degradation tag for the ClpCP protease. J Biol Chem 2009, 284 (49):34366-34375.