1. C.A. Hall and X. Ye, Construction of null basis for the divergence operator associated with incompressible Navier-Stokes equations, J. Linear Algebra and Applications, 171 (1992), 9-52.
2. X. Ye and C. A. Hall, Construction of an optimal weakly divergence free macro element, Int. J. Numerical Method for Engineering, 36 (1993), 2245-2262.
3. G. Li, G. Anderson, X. Ye and K. Henle, Effects of flow in countercurrent blood vessels on the temperature distributions in tissue during rapid hyperthermia, Advances in Bioheat and Mass Transfer.ASME 1993 WAM, HTD 268 (1993), 113-116
4. X. Ye and G. Anderson, The minimum support discrete divergence free basis for a mini element, Applied Mathematics Letters, 6 (1993), 55-57.
5. G. Anderson, X. Ye, K. Henle, Z. Yang and G. Li, A numerical study of rapid heating for high temperature radio frequency hyperthermia, Int. J. Biomedical Computing, 35 (1994), 178-183.
6. G. Anderson and X. Ye, A numerical analysis of a focused ultrasound technique to measure perfusion, J. Biomechanical Engineering, 116 (1994), 178-183.
7. X. Ye and C. Hall, The construction of null basis for a discrete divergence operator, J. Computational and Applied Mathematics, 58 (1995), 117-133.
8. X. Ye. And G. Anderson, The derivation of minimal support basis functions for a discrete divergence operator, J. Computational and Applied Mathematics, 61 (1995), 105-116.
9. P. Shi and X. Ye, A least-square mixed method for stokes equations, Numer. Methods for Partial Differential Equations, 13 (1997) 191-199.
10. X. Ye and C. Hall, A discrete divergence free basis for finite element methods, Numerical Algorithms, 16 (1997), 365-380.
11. X. Ye, Domain decomposition for a least-square finite element method for the Stokes equations, Applied Mathematics and Computation, 97 (1998), 45-53.
12. W. Layton and X. Ye, Nonconforming two-level discetization of stream function form of the Navier-Stokes equations, Applied Mathematics and Computation, 89 (1998), 173-183.
13. Z. Cai, R. Parashkevov, T. Russell, and X. Ye, Overlapping domain decomposition for a mixed finite element method in three dimensions, In P. Bjorstad, M. Espedal, and D. Keyes (eds.) the 9th International Conference on Domain Decomposition Methods, Bergen, Norway, 1998, 188-196.
14. X. Ye, Domain decomposition for a least-square finite element method for second order elliptic problem, Applied Mathematics and Computation, 91 (1998), 233-242.
15. W. Layton and X. Ye, Two level discretizations of the stream functions form of the Navier-Stokes equations, Numerical Functional Analysis and Optimization, 20 (1999), 909-916.
16. X. Ye, Two grid discretizations with backtracking of the stream function form of the Navier-Stokes equations, Applied Mathematics and Computation, 100 (1999), 131-138.
17. J. Douglas, Jr., J.E. Santos, D. Sheen, and X.. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems, Mathematical Modelling and Numerical Analysis, 33 (1999), 747-770.
18. X. Ye, A least squares finite element method for the Stokes equations with improved mass balances, Computer & Mathematics with Applications, 38 (1999), 229-237.
19. Z. Cai, X. Ye and H. Zhang, Least-squares finite element approximation for the Reissner-Mindlin plate, J. Numer. Linear Algebra and Application, 6 (1999), 479-496.
20. J. Douglas, Z. Cai and X. Ye, A stable quadrilateral nonconforming element for the Navier-Stokes Equations, Calcolo, 36 (1999), 215-232.
21. X. Ye, A rectangular element for the Reissner-Mindlin plate, Numer. Method for PDE, 16 (2000), 184-193.
22. Z. Cai and X. Ye, A least-squares finite element approximation for the compressible stokes equations, Numer. Method for PDE, 16 (2000), 62-70.
23. X. Ye, Stabilized finite element approximations for the Reissner-Mindlin plate, Advances in Computational Mathematics, 13 (2000), 375-386.
24. X. Ye, On the relationship between finite volume and finite element methods applied to the Stokes equations, Numer. Method for PDE, 17 (2001), 440-453.
25. J. Wang and X. Ye, Superconvergence of finite element approximations for the Stokes problem by least squares surface fitting, SIAM J. Numer. Anal, 39 (2001), 1001-1013.
26. X. Ye, Superconvergence of nonconforming finite element method for the Stokes equations, Numer. Method for PDE, 18 (2002), 143-154.
27. X. Wang and X. Ye, Superconvergence analysis for the Navier-Stokes equations, Applied Numerical mathematics, 41 (2002), 515-527.
28. X. Ye and C. Xu, A discontinuous Galerkin method for the Reissner-Mindlin plate in the primitive variables, Applied Mathematics and Computation, 149 (2003), 65-83.
29. Z. Cai, R. R. Parashkevov, T. F. Russell and X. Ye, Domain decomposition for a mixed finite element method in three dimensions, SIAM J. Numerical Analysis. 41 (2003), 181-194.
30. X. Ye, Discontinuous stable elements for incompressible flow, Advances in Computational Mathematics, 20 (2004), 333-345.
31. J. Wang and X. Ye, A superconvergent finite element scheme for the Reissner-Mindlin plate by projection methods, International Journal of Numeerical Analysis and Modeling, 1 (2004), 99-110.
32. X. Ye, A new discontinuous finite volume method for elliptic problems, SIAM J. Numerical Analysis, 42 (2004), 1062-1072.
33. Z. Cai and X. Ye, A mixed nonconforming finite element for linear elasticity, Numer. Method for PDE, 21 (2005), 1043-1051.
34. X. Ye, A discontinuous finite volume method for the Stokes problem, SIAM J. Numerical Analysis, 44 (2006), 183-198.
35. R. Lazarov and X. Ye, Stabilized discontinuous finite element approximations for Stokes equations, Journal of Computational and Applied Mathematics, 198 (2007), 236 – 252.
36. J. Wang and X. Ye, New finite element methods in computational fluid dynamics by H(div) elements, SIAM Numerical Analysis, 45 (2007), 1269-1286..
37. S. Chou and X. Ye, Unified analysis of finite volume methods for second order elliptic problems, SIAM Numerical Analysis, 45 (2007), 1639-1653.
38. S. Chou and X. Ye, Superconvergence of finite volume methods for the second order elliptic problem, Computer Methods in Applied Mechanics and Engineering, 196 (2007), 3706-3712.
39. X. Ye, Analysis and convergence of finite volume method using discontinuous bilinear functions, Numerical Methods for Partial Differential Equations, 24 (2007), 335 - 348.
40. J. Wang, X. Wang and X. Ye, Finite element methods for the Navier-Stokes equations by H(div) elements, Journal of Computational Mathematics, 26 (2008), 410-436.
41. M Cui and X. Ye, Superconvergence of finite volume methods for the Stokes equations, Numerical Methods for Partial Differential Equations, 25 (2009), 1212-1230.
42. J. Wang, Y. Wang and X. Ye, A robust numerical method for Stokes equations based on divergence-free H(div) finite element methods, SIAM J. Sci. Comput. 31 (2009), 2784-2802.
43. J. Li, J. Wang and X. Ye, Superconvergence by $L^2$-projections for stabilized finite element methods for the Stokes equations, International Journal of Numerical Analysis and Modeling, 6 (2009), 711-723.
44. J. Wang, Y. Wang and X. Ye, A new finite volume method for the Stokes problems, International Journal of Numerical Analysis and Modeling, 7 (2010), 281-302.
45. M. Cui and X. Ye, Unified analysis of finite volume methods for the Stokes equations, SIAM Numer. Anal., 48, (2010), 824-839.
46. X. Ye, A posterior error estimate for finite volume methods of the second order elliptic problem, Numerical Methods for Partial Differential Equations, 7 (2011), 1156-1178.
47. J. Wang, Y. Wang and X. Ye, A posterior error estimation for an interior penalty type method employing H(div) elements for the Stokes equations, SIAM J. Sci, Comput. 33, (2011), 131-152.
48. J. Liu, L. Mu and X. Ye, A comparative study of locally conservative numerical methods for Darcy’s flow, Procedia Computer Science, 00 (2011), 1-10.
49. J. Liu, L. Mu and X. Ye, Adaptive discontinuous finite volume methods for the second order elliptic problem, Journal of Computational and Applied Mathematics, 235 (2011), 5422-5431.
50. Z. Cai, X. Ye and S. Zhang, Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations, SIAM J. Numer. Anal, 49 (2011), 1761-1781.
51. Lin Mu and X. Ye, Finite volume method for the Navier-Stokes equations, Nonlinear Analysis, 74 (2011), 6686-6695.
52. J. Liu, L. Mu and X. Ye, L2 error estimation for DGFEM for elliptic problems with low regularity, Applied Mathematics Letters, 25 (2012), 1614-1618.
53. J. Liu, L. Mu, R. Jari and X. Ye, Convergence of the discontinuous finite volume method for elliptic problems with minimum regularity, Journal of Computational and Applied Mathematics, 236 (2012), 4537-4546.
54. J. Wang, Y. Wang and X. Ye, A posteriori error estimate for stabilized finite element methods for the Stokes equations, International Journal of Numerical Analysis and Modeling, 9 (2012), 1-16.
55. J. Wang, Y. Wang and X. Ye, A unified posterior error estimate for finite volume methods for the Stokes Equations, Math. Meth. Appl. Sci., 41 (2018), 866–880.
56. R. Jari, Lin Mu and X, Ye, Superconvergence of H(div) finite element approximations for the Stokes problem by L^2 projection methods, Applied Mathematics and Computation, 10 (2013), 5649-5655.
57. T. Lin and X. Ye, A posteriori error estimate for finite volume methods of a second order elliptic equation with bilinear trial functions, Journal of Computational and Applied Mathematics, 254 (2013), 185-191.
58. J. Wang, Y. Wang and X. Ye, Unified a posteriori error estimator for finite element methods for the Stokes equations, International Journal of Numerical Analysis and Modeling, 10 (2013), 551-570.
59. L. Mu, J. Wang, Y. Wang and X. Ye, A computational study of the weak Galerkin method for the second order elliptic equations, Numerical Algorithm, 63, (2013), 753-777.
60. J. Wang and X. Ye, A weak Galerkin finite element method for second order elliptic problems, J. of Computational and Applied Mathematics, 241 (2013), 103-115.
61. L. Mu, J. Wang, Y. Wang and X. Ye, A weak Galerkin mixed finite element method for biharmonic equations, Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications, 45 (2013), 247-277.
62. L. Mu, J. Wang, G. Wei, X. Ye and S. Zhao, Weak Galerkin method for the elliptic interface problem, J. of Computational Physics, 250 (2013), 106-125.
63. L. Mu, J. Wang, Y. Wang and X. Ye, Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes, J. of Computational and Applied Mathematics, 255 (2014), 432-440.
64. J. Wang and X. Ye, A weak Galerkin mixed finite element method for second-order elliptic problems, Math. Comp., 83 (2014), 2101-2126.
65. L. Chen, J. Wang and X. Ye, A posteriori error estimates for Weak Galerkin finite element methods for second order elliptic problem, J. of Scientific Computing, 59 (2014), 496-511.
66. L. Mu, J. Wang, X. Ye, S. Zhang, C^0 Weak Galerkin finite element methods for the biharmonic equation, J. of Scientific Computing, 59 (2014), 437-495.
67. L. Mu, J. Wang, X. Ye and S. Zhao, Numerical studies on the Weak Galerkin method for the Helmholtz equation with large wave number, Communications in Computational Physics, 15 (2014), 1461-1479.
68. L. Mu, J. Wang, and X. Ye, A weak Galerkin finite element method for biharmonic equations on polytopal meshes, Numerical Methods for Partial Differential Equations, 30 (2014), 1003-1029.
69. L. Mu, J. Wang, and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. of Computational Physics, 273 (2014), 327-342.
70. G. Lin, J. Liu, L.Mu and X. Ye, Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity, J. of Computational Physics, 276 (2014), 422-437.
71. L. Mu, J. Wang and X. Ye, Weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes, IMA Journal of Numerical Analysis, 35 (2015), 1228-1255.
72. L. Mu, X. Wang and X. Ye, A modified weak Galerkin finite element method for the Stokes equations, J. of Computational and Applied Mathematics, 275 (2015), 79-90.
73. L. Mu, J. Wang, and X. Ye, Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes, International Journal of Numerical Analysis and Modeling, 12 (2015), 31-53.
74. L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. of Scientific Computing, 65 (2015), 363-386.
75. L. Mu, J. Wang, and X. Ye, A Weak Galerkin finite element method with polynomial reduction, J. of Computational and Applied Mathematics, 285 (2015), 45-58.
76. L. Chen, J. Wang, Y. Wang and X. Ye, An auxiliary space multigrid preconditioner for the weak Galerkin method, Computers and Mathematics with Applications, 70 (2015), 330-344.
77. J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Advances in Computational Mathematics, 42 (2016), 155-174.
78. L. Mu, J. Wang and X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. of Computational and Applied Mathematics, 307 (2016), 335-345.
79. L. Mu, J. Wang, X. Ye and S. Zhao, A new weak Galerkin finite element method for elliptic interface problems, J. of Computational Physics, 325 (2016), 157-173.
80. L. Mu, J. Wang and X. Ye, A weak Galerkin generalized multiscale finite element method, J. of Computational and Applied Mathematics, 305 (2016), 68-
81. L. Mu and X. Ye, A simple finite element method for the Stokes equations, Advances in Computational Mathematics, 43 (2017), 1305-1324.
82. L. Mu and X. Ye, A simple finite element method for non-divergence form elliptic equations, International journal of Numerical Analysis and Modeling, 14 (2017), 306-311.
83. X. Hu, L. Mu and X. Ye, A simple finite element method of the Cauchy problem for Poisson equation, International journal of Numerical Analysis and Modeling, 14 (2017), 591-603.
84. L. Mu, J. Wang, and X. Ye, Effective implementation of the Weak Galerkin finite element methods for the biharmonic equation, Computers & Mathematics with Applications, 74 (2017), 1215-1222.
85. L. Mu, J. Wang, and X. Ye. A least-squares based weak Galerkin finite element method for second order elliptic equations, SIAM Journal on Scientific Computing, 39 (2017), A1531-A1557.
86. Q. Zhai, X. Ye, R.Wang and R. Zhang, A weak Galerkin finite element scheme with boundary continuity for second-order elliptic problems, Computers & Mathematics with Applications, 74 (2017), 2243-2252.
87. X. Hu, L. Mu and X. Ye, Weak Galerkin method for the Biot’s consolidation model, Computers and Mathematics with Applications, 75 (2018), 2017-2030.
88. L. Mu and X. Ye, A simple finite element method for linear hyperbolic equation, J. of Computational and Applied Mathematics, 330 (2018), 330-339.
89. L. Mu, J. Wang, and X. Ye. A weak Galerkin method for the Reissner-Mindlin plate in primary form, J. of Scientific Computing, 75 (2018), 782-802.
90. L. Mu, J. Wang, X. Ye and S. Zhang. A discrete divergence free weak Galerkin finite element method for the Stokes equations, Applied Numerical Mathematics, 125 (2018), 172-182.
91. H. Li, L. Mu and X. Ye, Interior energy estimates for the weak Galerkin finite element method, Numerische Mathematik, 139 (2018), 447-478.
92. R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numerical Analysis, 56 (2018), 1482-1497.
93. J. Li, X. Ye and S. Zhang, A weak Galerkin least-squares finite element method for div-curl systems, J. of Scientific Computing, 363 (2018), 79-86.
94. J. Wang, X. Ye, Q. Zhai and R. Zhang, Discrete maximum principle for the P1-P0 weak Galerkin finite element approximations, J. of Computational Physics, 362 (2018), 114-130.
95. R. Wang, L. Mu and X. Ye, A locking free Reissner-Mindlin element with weak Galerkin rotations, Discrete and Continuous Dynamical Systems B, 24 (2019), 351-361.
96. H. Li, L. Mu and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes, Commun. Comput. Phys, 26 (2019), 558-578.
97. J. Adler, X. Hu, L. Mu and X. Ye, A posteriori error estimate for the Weak Galerkin least-squares finite element method, J. of Computational and Applied Mathematics., 362 (2019), 383-399.
98. X. Hu, L. Mu and X. Ye, A weak Galerkin finite element method for the Navier-Stokes equations on polytopal meshes, J. of Computational and Applied Mathematics, 362 (2019), 614-625.
99. X. Ye and S. Zhang, A discontinuous least-squares finite element method for second order elliptic equations, International Journal of Computer Mathematics, 96 (2019), 557-567.
100. L. Mu, X. Ye and S. Zhang, Development of a P2 element with optimal L2 convergence for biharmonic equation, Numer. Meth. PDE, 21 (2019), 1497-1508.
101. X. Ye, S. Zhang and Z. Zhang, A new P1 weak Galerkin method for the biharmonic equation, J. Comput. Appl. Math, 364 (2020), 112-337.
102. X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method, Int. J of Numerical Analysis and Modeling, 17 (2020), 110-117, arXiv:1904.03331.
103. X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part II, Int. J of Numerical Analysis and Modeling, 17 (2020), 281-296, arXiv:1907.01397.
104. X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math., 372 (2020), 112699, arXiv:1906.06634.
105. X. Ye, S. Zhang, and P. Zhu, a discontinuous Galerkin least-squares finite element method for div-curl system, J. Comput. Appl. Math., 367 (2020), 112474.
106. X. Ye, S. Zhang and Y. Zhu, Stabilizer-free weak Galerkin methods for monotone quasilinear elliptic PDEs, Results in Applied Mathematics, 8 (2020), 100097.
107. R. Lin, X. Ye, S. Zhang and P. Zhu, Analysis of a DG method for singularly perturbed convection-diffusion problems, Journal of Applied Analysis and Computation, 10 (2020), 830-841.
108. X. Ye and S. Zhang, A stabilizer free weak Galerkin method for the biharmonic equation on polytopal meshes, SIAM J. Numerical Analysis, 58 (2020), 2572-2588, arXiv:1907.09413.
109. X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part III, Int. J of Numerical Analysis and Modeling, 17 (2020), 794-805,
110. X. Ye, S. Zhang and Z. Zhang, A Locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes, Computers and Mathematics with Applications, 80 (2020), 906-916.
111. J. Wang, X. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J of Numerical Analysis and Modeling, 17 (2020), 517-531.
112. M. Cui, X. Ye and S. Zhang, A modified weak Galerkin finite element method for the biharmonic equation on polytopal meshes, Communication on Applied Mathematics and Computation, 3 (2021), 91-105.
113. X. Ye and S. Zhang, A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction, DCDS-B, 26 (2021), 4131-4145.
114. X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for nonlinear conservation laws, Electronic Research Archive, 29 (2021), 1897-1923.
115. A. AL-Taweel, X. Wang, X. Ye and S. Zhang, A stabilizer free weak Galerkin method with supercloseness of order two, Numer. Meth. PDE, 37 (2021), 1012-1029.
116. X. Ye and S. Zhang, Low regularity error analysis for weak Galerkin finite element methods, Numerical Mathematics: Theory, Methods and Applications, 14 (2021), 613-623.
117. X. Ye and S. Zhang, A weak Galerkin finite element method for p-Laplacian problem, East Asian Journal on Applied Mathematics, 11 (2021), 219-233.
118. X. Ye and S. Zhang, A $P_{k+2}$polynomial lifting operator on polygons and polyhedrons, Applied Mathematics Letters, 116 (2021), 107033.
119. X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes, International Journal for Numerical Methods in Fluids, 93 (2021), 1913-1928.
120. X. Wang, X. Ye and S. Zhang, Weak Galerkin finite element methods with or without stabilizers, Numerical Algorithm, to appear., 88 (2021), 1361-1381.
121. X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II, J. Comput. Appl. Math., 394 (2021), 113525.
122. X. Ye and S. Zhang, A stabilizer-free pressure-robust finite element method for the Stokes equations, Advances in Computational Mathematics, 47 (2021).
123. X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part III, J. Comput. Appl. Math, 394 (2021), 113538.
124. L. Mu, X. Ye and S. Zhang, A stabilizer free, pressure robust and superconvergence weak Galerkin finite element method for the Stokes Equations on polytopal mesh, SIAM J. Sci, Comput., 43 (2021), A2614-A2637.
125. X. Ye and S. Zhang, A numerical scheme with divergence free H-div triangular finite element for the Stokes equations, Applied Numerical Mathematics, 67 (2021), 211-217.
126. C. Wang, J. Wang, X. Ye and S. Zhang, De Rham Complexes for Weak Galerkin Finite Element Spaces, J. Comput. Appl. Math., 397 (2021), 113645.
127. X. Ye and S. Zhang, A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh, Elec. Res. Arch., 29 (2021), 3609-3627.
128. J. Wang and X. Ye, The basic of weak Galerkin finite element methods, arXiv:1901.10035.
129. L. Mu, X. Ye and S. Zhang, Development of pressure-robust discontinuous Galerkin finite element methods for the Stokes problem, J. Sci. Comp., 89 (2021).
130. F. Gao, X. Ye and S Zhang, A discontinuous Galerkin finite element method without interior penalty terms, Adv. Appl. Math. and Mech, 4 (2022), 299-314.
131. X. Wang, X. Ye, S. Zhang and P. Zhu, A weak Galerkin least squares finite element method of Cauchy problem for Poisson equation, J. Comput. Appl. Math., 401 (2022), 113767.
132. X. Ye, S. Zhang and P. Zhu, Development of a LDG method on polytopal mesh with optimal order of convergence, J. Comput. Appl. Math., 410 (2022), 1134179.
133. Y. Lin, X. Ye and S. Zhang, A mixed finite element method on polytopal mesh, Comm. Appl. Math. and Comp., https://doi.org/10.1007/s42967-021-00180-z.
134. X. Ye and S. Zhang, A weak divergence CDG method for biharmonic equation on triangle/tetrahedron, Applied Numerical Mathematics, (2022).
135. X. Ye and S. Zhang, Achieving superconvergence by one-dimension finite element: weak Galerkin method, East Asian Journal of Applied Mathematics, 12 (2022), 590-598.
136. X. Ye and S. Zhang, Achieving superconvergence by one-dimensional discontinuous finite elements: The CDG method, East Asian Journal of Applied Mathematics, 12 (2022), 781-790.
137. X. Ye and S. Zhang, A family of H-div-div mixed triangular finite elements for the biharmonic equation, Results in Applied Mathematics, 15 (2022), 100318.
138. X. Ye and S. Zhang, Order two superconvergence of the CDG method for the Stokes equations on triangle/tetrahedron, J. of Appl. Anal. & Comp., 12 (2022), 2578-2592.
139. J. Wang, X. Wang, X. Ye, S. Zhang and P. Zhu, Two‐order superconvergence for a weak Galerkin method on rectangular and cuboid grids , Numer. Meth. PDE, (2022), https://doi.org/10.1002/num.22918
140 X. Ye and S. Zhang, Constructing order two superconvergent WG finite elements on rectangular meshes, Numer. Math. Theor. Meth. Appl., 16 (2023), 230–241.
141. X. Ye and S. Zhang, Order Two Superconvergence of the CDG Finite Elements on Triangular and Tetrahedral Meshes, CSIAM Tran. Appl. Math., 4 (2023), 256-274.
142. J. Wang, X. Wang, X. Ye, S. Zhang and P. Zhu, On the superconvergence of a WG method for the elliptic problem with variable coefficients, Science China Mathematics, 31 (2023). https://doi.org/10.1007/s11425-022-2097-8.
143 J. Wang;, X. Ye, S. Zhang, A time-explicit weak Galerkin scheme for parabolic equations on polytopal partitions. J. Numer. Math. 31 (2023), 125–135.
144. X. Ye; and S. Zhang, Four-Order Superconvergent Weak Galerkin Methods for the Biharmonic Equation on Triangular Meshes,.Commun. Appl. Math. Comput. 5 (2023), 1323–1338.
145. X. Ye and S. Zhang, A conforming DG method for the biharmonic equation on polytopal meshes. Int. J. Numer. Anal. Model. 20 (2023), 855–869.
146. X. Ye and S. Zhang, Constructing a CDG finite element with order two superconvergence on rectangular meshes, Commun. Appl. Math. Comput., (2023), DOI 10.1007/s42967-023-00330-5
147. X. Ye and S. Zhang, A superconvergent CDG finite element for the Poisson equation on polytopal meshes, ZAMM Z. Angew. Math. Mech. 104 (2024), no. 3, Paper No. e202300521, 16 pp. .
148. X. Ye and S. Zhang, Fourth-order superconvergence CDG finite element for the biharmonic equation on triangular meshes, J. Comput. Appl. Math., 440 (2024), 115516.
149. D. Li, C. Wang, J. Wang and X. Ye, Generalized weak Galerkin finite element methods for second order elliptic problems, J. Comput. Appl. Math., (2024), 115833.
150. X. Ye and S. Zhang, An H-div finite element method for the Stokes equations on polytopalmeshes, J. Comput. Appl. Math., (2024), https://doi.org/10.1007/s40314-024-02695-6.
151. C. Wang, X. Ye and S. Zhang. A modified weak Galerkin finite element method for the Maxwell equations on polyhedral meshes, J. Comput. Appl. Math., 448 (2024), 115918.
152 X. Ye and S. Zhang; Order two superconvergence of the CDG finite elements for non-self adjoint and indefinite elliptic equations. Adv. Comput. Math. 50 (2024),.
153. J. Xu, X. Ye and S. Zhang, A macro BDM H-div mixed finite element on polygonal and polyhedral meshes, Applied Numerical Mathematics, 206 (2024)., 283-297.
154. X. Ye and S. Zhang, A divergence-free Pk CDG finite element for the Stokes equations on triangular and tetrahedral meshes, Numerical Mathematics: Theory, Methods and Applications, (2024), DOI: 10.4208/nmtma.OA-2024-0063
155. L. Mu; X. Ye, S. Zhang and P. Zhu; A DG Method for the Stokes Equations on Tensor Product Meshes with Pk−Pk−1 Element, Commun. Appl. Math. Comput., 6 (2024), 2431–2454..
156 Y. Nie, X. Ye and S. Zhang, A potential-robust WG finite element method or the Maxwell equations on tetrahedral meshes, Comput. Methods Appl. Math., 2025;