Research

Projects

Cell cycle and mitotic fidelity

The cell cycle comprises a series of processes, like DNA duplication and nuclear division, which lead to the formation of two daughter cells from one mother cell. These events are highly similar even between evolutionarily distant organisms, such as the unicellular fission yeast and humans. Cell cycle progression is tightly regulated and coordinated, and defects in these processes can lead to cancer. In fission yeast, failed coordination between nuclear division and cytokinesis may lead to catastrophic mitosis and the so-called „cut“ (cell untimely torn) phenotype, where the division septum forms aberrantly across an undivided nucleus. Several classes of „cut“ mutants have been described, including some lipid metabolism genes. We have identified Cbf11, a fission yeast CSL-family transcription factor, as a transcriptional regulator of lipid metabolism genes important for mitotic fidelity. Our current research aims to clarify the connection between lipid metabolism and catastrophic mitosis.

Response to stress and nutrient availability

Changes in the environment, such as the presence of toxins or depletion of nutrients, pose constant challenges to cells. Furthermore, harmful insults can also come from within the cell, as exemplified by the generation of reactive oxygen species during respiration. In order to survive, cells need to deal with various stressful conditions, either by neutralizing the stressor or by physiological adaptation. To this end, elaborate signalling pathways have evolved that allow cells to sense and respond to stress.

Oxidative stress represents a complex and intensely studied phenomenon tightly linked to a range of human diseases. Despite considerable research efforts, the cellular and organismal responses to oxidative stress are not completely understood. In fission yeast, the response to oxidative stress is mainly mediated by two pathways: 1) the MAP kinase Sty1/p38 pathway, and 2) the redox-sensitive transcription factor Pap1/AP-1. We aim to identify additional regulatory components in these signalling networks, and how these respond to changes in nutrient availability.

Figure 1 - Fluorescence microscopy of fixed WT and lipid metabolism mutant fission yeast cells demonstrates how Cbf11 (transcription factor) and its target Cut6 (acetyl-coenzyme A carboxylase) are required for proper execution of mitosis. Cells were stained with DAPI to visualize DNA. Asterisks mark cells in which catastrophic mitosis occurred and the nucleus was cut by the prematurely formed division septum. White bar represents 10 micrometers.

Figure 2 - Hierarchical clustering of 340 fission yeast genes showing differential expression under various cultivation conditions (different media, growth phases, genetic perturbations) identified distinct patterns in regulation of oxidative stress-response genes.

Publications

2021

Repression of a large number of genes requires interplay between homologous recombination and HIRA.

Misova I, Pitelova A, Budis J, Gazdarica J, Sedlackova T, Jordakova A, Benko Z, Smondrkova M, Mayerova N, Pichlerova K, Strieskova L, Prevorovsky M, Gregan J, Cipak L, Szemes T, Bagelova Polakova S.

Nucleic Acids Res. 2021 Feb 26;49(4):1914-1934. doi: 10.1093/nar/gkab027.


2019

The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes

Šiková M, Wiedermannová J, Převorovský M, Barvík I, Sudzinová P, Kofroňová O, Benada O, Šanderová H, Condon C, Krásný L.

EMBO J. 2019 Dec 16:e102500. doi: 10.15252/embj.2019102500.


Analysis of Lipid Droplet Content in Fission and Budding Yeasts using Automated Image Processing

Princová J, Schätz M, Ťupa O, Převorovský M.

J Vis Exp. 2019 Jul 17;(149).


2018

Ms1 RNA increases the amount of RNA polymerase in Mycobacterium smegmatis.

Šiková M, Janoušková M, Ramaniuk O, Páleníková P, Pospíšil J, Bartl P, Suder A, Pajer P, Kubičková P, Pavliš O, Hradilová M, Vítovská D, Šanderová H, Převorovský M, Hnilicová J, Krásný L.

Mol Microbiol. 2018 Nov 14. doi: 10.1111/mmi.14159.


The phenomenon of lipid metabolism "cut" mutants.

Zach R, Převorovský M.

Yeast. 2018 Oct 2. doi: 10.1002/yea.3358.


Mitotic defects in fission yeast lipid metabolism 'cut' mutants are suppressed by ammonium chloride.

Zach R, Tvarůžková J, Schätz M, Ťupa O, Grallert B, Převorovský M.

FEMS Yeast Res. 2018 Sep 1;18(6). doi: 10.1093/femsyr/foy06


σI from Bacillus subtilis: Impact on Gene Expression and Characterization of σI-Dependent Transcription That Requires New Types of Promoters with Extended -35 and -10 Elements.

Ramaniuk O, Převorovský M, Pospíšil J, Vítovská D, Kofroňová O, Benada O, Schwarz M, Šanderová H, Hnilicová J, Krásný L.

J Bacteriol. 2018 Aug 10;200(17). pii: e00251-18. doi: 10.1128/JB.00251-18.


Introns provide a platform for intergenic regulatory feedback of RPL22 paralogs in yeast.

Abrhámová K, Nemčko F, Libus J, Převorovský M, Hálová M, Půta F, Folk P.

PLoS One. 2018 Jan 5;13(1):e0190685. doi: 10.1371/journal.pone.0190685.


2017

Nineteen complex-related factor Prp45 is required for the early stages of cotranscriptional spliceosome assembly.

Hálová M, Gahura O, Převorovský M, Cit Z, Novotný M, Valentová A, Abrhámová K, Půta F, Folk P.

RNA. 2017 Oct;23(10):1512-1524. doi: 10.1261/rna.061986.117.


2016

Workflow for Genome-Wide Determination of Pre-mRNA Splicing Efficiency from Yeast RNA-seq Data

Převorovský M, Hálová M, Abrhámová K, Libus J, Folk P.

BioMed Research International. 2016. doi:10.1155/2016/4783841


Spotsizer: High-throughput quantitative analysis of microbial growth.

Bischof L, Převorovský M, Rallis C, Jeffares DC, Arzhaeva Y, Bähler J.

Biotechniques. 2016 Oct 1;61(4):191-201.


CSL protein regulates transcription of genes required to prevent catastrophic mitosis in fission yeast.

Převorovský M, Oravcová M, Zach R, Jordáková A, Bähler J, Půta F, Folk P.

Cell Cycle. 2016 Sep 29:0.


2015

Fission Yeast CSL Transcription Factors: Mapping Their Target Genes and Biological Roles.

Převorovský M, Oravcová M, Tvarůžková J, Zach R, Folk P, Půta F, Bähler J.

PLoS One. 2015;10(9):e0137820.


The genomic and phenotypic diversity of Schizosaccharomyces pombe.

Jeffares DC, Rallis C, Rieux A, Speed D, Převorovský M, Mourier T, Marsellach FX, Iqbal Z, Lau W, Cheng TMK, Pracana R, Mülleder M, Lawson JLD, Chessel A, Bala S, Hellenthal G, O’Fallon B, Keane T, Simpson JT, Bischof L, Tomiczek B, Bitton DA, Sideri T, Codlin S, Hellberg JEEU, van Trigt L, Jeffery L, Li J-J, Atkinson S, Thodberg M, Febrer M, McLay K, Drou N, Brown W, Hayles J, Carazo Salas RE, Ralser M, Maniatis N, Balding DJ, Balloux F, Durbin R, Bähler J.

Nature Genetics (2015) doi:10.1038/ng.3215.


2014

pREPORT: a multi-readout transcription reporter vector for fission yeast.

Převorovský M.

Yeast. 2014 Nov 13. doi: 10.1002/yea.3055.


Glioma-Associated Proteases (book chapter)

Bušek P, Převorovský M, Křepela E, Šedo A.

pp 317-395 in Glioma Cell Biology, Part II, Editors: Šedo A, Mentlein R, 2014

ISBN: 978-3-7091-1430-8


2013

Fission yeast CSL proteins function as transcription factors.

Oravcová M, Teska M, Půta F, Folk P, Převorovský M.

PLoS One. 2013;8(3):e59435


2012

Predicting the fission yeast protein interaction network.

Pancaldi V, Saraç OS, Rallis C, McLean JR, Převorovský M, Gould K, Beyer A, Bähler J.

G3 (Bethesda). 2012 Apr;2(4):453-67.


2011

Bright days for yeast research.

Převorovský M, Rallis C.

Genome Biol. 2011;12(5):305.


N-termini of fungal CSL transcription factors are disordered, enriched in regulatory motifs and inhibit DNA binding in fission yeast.

Převorovský M, Atkinson SR, Ptáčková M, McLean JR, Gould K, Folk P, Půta F, Bähler J.

PLoS One. 2011;6(8):e23650.


2009

Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division.

Převorovský M, Groušl T, Staňurová J, Ryneš J, Nellen W, Půta F, Folk P.

Exp Cell Res. 2009 May 1;315(8):1533-47.


High environmental iron concentrations stimulate adhesion and invasive growth of Schizosaccharomyces pombe.

Převorovský M, Staňurová J, Půta F, Folk P.

FEMS Microbiol Lett. 2009 Apr;293(1):130-4.


2007

Fungal CSL transcription factors.

Převorovský M, Půta F, Folk P.

BMC Genomics. 2007 Jul 13;8:233.


2003

A/T-rich inverted DNA repeats are destabilized by chaotrope-containing buffer during purification using silica gel membrane technology.

Převorovský M, Půta F.

Biotechniques. 2003 Oct;35(4):698-700, 702.

Funding

Current

Czech Science Foundation (20-12109S - The Unique Mycobacterial Transcription Machinery: Insights into its Composition, Structure & Functioning, 2020-2022)

Charles University Grant Agency (GAUK 248120 - Transcription regulators of lipid metabolism in the fission yeast Schizosaccharomyces pombe - mapping their target genes and their role in preventing catastrophic mitosis)

Charles University Grant Agency (GAUK 1311120 - Nitrogen source as a determinant of mitotic fidelity in fission yeast)

Charles University (SVV 260206)

Past

Charles University (PRIMUS/MED/26 - New interconnections between lipid metabolism and centromeric heterochromatin function, 2017-2019)

Charles University Grant Agency (GAUK 1170217 - Mitochondrial hormesis in Schizosaccharomyces pombe: alternative mechanisms of prolonging chronological lifespan, 2017-2019)

Charles University Grant Agency (GAUK 1308217 - Evolutionary plasticity: Notch-independent CSL signaling and lipid metabolism, 2017-2019)

Charles University (UNCE 204013)

Charles University Grant Agency (GAUK 640413 - Characterization of DNA binding of CSL transcription factors in the yeast Schizosaccharomyces pombe, 2013-2015)

Czech Science Foundation (P305/12/P040 - Fission yeast CSL proteins in the maintenance of genome integrity, 2012-2014)

Charles University Grant Agency (GAUK 92009 - Identification of CSL-responsive genes in Schizosaccharomyces pombe, 2009-2011)

Charles University Grant Agency (GAUK 157/2005/B-BIO/PrF - The function of the CBF1 homolog from S. pombe – tracking the ancestral role of an important transcription factor, 2005-2006)