Nesse sistema de comunicação, a transmissão de feixes é feita por infravermelho modulado transmitido através do ar. Assim como em sistemas que utilizam fibra óptica como meio de comunicação, as comunicações ópticas no espaço livre também se utilizam de lasers para transmitir informação, mas ao invés dos sinais trafegarem pela fibra de sílica (SiO2), o tráfego é estabelecido pelo ar livre.
Esta tecnologia trabalha utilizando princípios semelhantes aos dos controles remotos infravermelho de alguns televisores, teclados sem fio e outros equipamentos atualmente encontrados no mercado mundial.
O princípio desta, baseia-se em trabalhar com transmissão de feixes luminosos através de diodos lasers, esta é feita através de um aparelho para outro, sendo eles semelhantes a telescópios, denominados transceptores, isto é, transmissor e receptor ao mesmo tempo, usando lasers de baixa potência na faixa de freqüência de THz. Os feixes são transmitidos pelo laser focado em receptores altamente sensíveis.
Estes possuem lentes telescópicas capazes de coletar a informação contida na modulação que faz parte do feixe óptico, alterando a potência, que é a taxa de fótons emitidos por segundo. A energia de cada fóton depende apenas da freqüência da onda correspondente. Velocidades típicas já alcançadas estão na faixa de 100 Mbps a 2,5 Gbps, mas já há testes em que taxas de 160 Gbps foram obtidas.
Os sistemas ópticos que utilizam o espaço livre como meio de comunicação, podem funcionar para distâncias de diversos quilômetros, tendo melhor desempenho quando não há obstáculo algum entre os transceptores. A potência transmitida pelo laser e a sensibilidade do receptor são dois parâmetros importantes para determinar o comprimento de um enlace entre os transceptores medidos através da taxa de bit de erros (BER).
Para este sistema de comunicação não se torna necessário o licenciamento ou reserva de espectros de freqüência, ou até mesmo o fracionamento do espectro de freqüência com outros serviços, porque o laser não interfere em outros equipamentos, e na transmissão dos feixes, ponto a ponto, é extremamente difícil ocorrer interceptação, tornando-se assim uma tecnologia bastante segura. Em síntese, algumas das vantagens apresentadas pela tecnologia FSO estão apresentadas a seguir:
Não requer licença de espectro RF;
É de fácil atualização e suas interfaces abertas suportam equipamentos de uma variedade de fabricantes. Isso ajuda empresas e fornecedores a proteger seus investimentos nas estruturas de telecomunicações;
Não requer atualização de segurança no software;
É imune à interferência de freqüências de radio ou saturação;
Pode ser posicionado atrás de janelas, eliminando a necessidade de telhados caros.
Não disturba o sono.
No espectro eletromagnético, os sistemas ópticos sem fio operam próximos à região do infravermelho com comprimentos de onda típicos de 750 nm, 810 nm e 852 nm, devido à disponibilidade de fontes laser de baixo custo. Receptores PIN e APD com boa sensibilidade também estão disponíveis nesses parâmetros.
Entretanto, as constantes demandas por distância, especialmente em aplicações de telecomunicações, empurraram a operação desses sistemas para comprimentos de onda maiores, principalmente 1550 nm, onde fontes laser podem fornecer maior potência óptica. Amplificadores de fibra dopada a érbio (EDFA - Erbium Doped Fiber Amplifier) – poderão movimentar-se entre os transceptores, possibilitando amplificação de potência e, consequentemente, aumentando o alcance de do sistema.
A formulação [3] adotada é semi-empírica, com a parte empírica desenvolvida na atmosfera de algumas regiões brasileiras. Caracterização do sistema FSO é feita a partir do balanço de potência:
[1]
Onde:
P(0) = potência transmitida (dBm);
P(R) = sensibilidade do receptor (dBm);
a = perda total no enlace do espaço livre (dB);
M = margem de segurança do sistema (dB).
O conceito de balanço de potência se aplica para estabelecer a distancia máxima de operação (alcance) de um enlace entre os transceptores.
A perda total em um enlace FSO possui diversos componentes, como perda óptica no receptor, perda devida a erros de alvo (ou alinhamento), perda devido ao alargamento geométrica do raio laser, e perdas devido aos efeitos atmosféricos. Relatos encontrados na literatura sugerem que valores típicos para perdas ópticas do receptor e por erros de alvo são 9,0 dB e 3,0 dB; respectivamente.
A perda por alargamento geométrico do laser pode ser avaliada através da comparação entre a área iluminada na superfície do receptor e a área de superfície do raio que sai do transmissor. Esta perda depende da divergência geométrica do raio e do comprimento do enlace FSO.
Efeitos atmosféricos como absorção, dispersão e cintilação são os que mais contribuem para elevação da perda total no enlace. Tais efeitos podem prejudicar consideravelmente o desempenho dos sistemas FSO e reduzir sua disponibilidade.
A atenuação da potência laser na atmosfera é descrita pela lei de Beer [4,5]:
[2]
Onde:
R = alcance do enlace (m);
P(R) = potência laser à distância R da fonte;
P(0) = potência do laser na fonte;
σ = coeficiente de atenuação total ou coeficiente de extinção (m-1).
O coeficiente de atenuação total σ é composto por quatro parcelas: am (coeficiente de absorção molecular), aa (coeficiente de absorção aerossol), βm (coeficiente de espalhamento molecular ou espalhamento Rayleigh) e βa. (coeficiente de espalhamento aerossol ou Mie).
Na faixa de comprimento de onda de interesse, entre 780 nm e 1550nm, as dimensões das partículas em suspensão na atmosfera são da mesma ordem ou maiores destes comprimentos, tornando os coeficientes de absorção atmosférica e aerossol desprezíveis (am ≈ 0 e βa ≈ 0) [1,2].
O coeficiente de espalhamento molecular, ou espalhamento Rayleigh, que varia com o inverso da quarta potência do comprimento de onda do laser (1/l4) também pode ser negligenciado (βm ≈ 0) para a mesma faixa de trabalho. Dessa forma, o coeficiente de espalhamento aerossol ou Mie torna-se o coeficiente de atenuação total (σ ≈ βa).
O espalhamento Mie é fortemente evidenciado quando os diâmetros das partículas em suspensão são da ordem do comprimento de onda laser, tornando-se praticamente independente deste comprimento (l) à medida que o diâmetro dessas partículas cresce. A eficiência do espalhamento Mie também depende da visibilidade atmosférica, definida como a distância em que a intensidade da luz decresce 2% do seu valor inicial.
A atenuação devido ao espalhamento Mie varia com a visibilidade e com o comprimento de onda laser de acordo com:
[3]
Onde:
V = visibilidade (km);
= comprimento de onda do laser (nm);
q = distribuição de tamanho das partículas espalhadas, ou seja:
A avaliação completa da perda no enlace requer estimativa da perda por cintilação. Resultados experimentais indicam que as perdas por cintilação podem ser reduzidas com o uso de sistemas com múltiplos raios e/ou receptores com abertura larga.
http://www.teleco.com.br/tutoriais/tutorialtecfso/pagina_1.asp