Peer-reviewed journal publications (all in international refereed journals), * indicates student author

Click here to download these publications

27. Adiatma, Y.D., Saltzman, M.R, Liu, X.-M., Wang*, X., and Edwards, C.T., 2024: Lithium isotope stratigraphy and Ordovician weathering: Earth and Planetary Science Letters, v. 647, 119030.

26. Diamond, C.W., Saltzman, M.R., and Lyons T.W., Edwards, C.T., 2024, Middle Ordovician paleoenvironmental evolution of the western Laurentian carbonate platform: Evidence for persistent oxygenation of the shallow ocean and implications for biodiversification: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 655, 112499.

25. Young, S.A., Edwards, C.T., Ainsaar, L., Lindskog, A., and Saltzman, M.R., 2023, Seawater signatures of Ordovician climate and environment: in Harper, D.A.T., Lefebvre, B., Percival, I.G., and Servais, T., eds., A Global Synthesis of the Ordovician System: Part 1, Geological Society of London Special Publications, v. 532, p. 137–156.

24. Lu, X.*, Edwards, C.T., and Kendall, B., 2023, No evidence for expansion of global ocean euxinia during the base Stairsian mass extinction event (Tremadocian, Early Ordovician): Geochimica et Cosmochimica Acta, v. 341, p. 116–131.

23. Conwell*, C.T., Saltzman, M.R., Edwards, C.T., Griffith, E.M., Adiatma*, Y.D., 2022, Coupling of mafic weathering and climate change during the early Paleozoic: Geology, v. 50 p. 886–890.

22.  Edwards, C.T., Jones, C.M., Fike, D.A., and Quinton, P.C., 2022, Oxygen isotope (𝜹18O) trends measured from conodont apatite using secondary ion  mass spectrometry (SIMS): implications for paleothermometry studies: Geological Society of America Bulletin, v. 134, p. 261–274. 

21.  Zhang, J., Edwards, C.T., Diamond*, C.W., Lyons, T.W., and Zhang, Y., 2021., Marine oxygenation, deoxygenation and life during the early Paleozoic:  an overview:  Palaeogeography, Palaeoclimatology, Palaeoecology, v. 584, 110715. 

20.  Edwards, C.T., Fike, D.A., and Saltzman, M.R., 2019, Testing carbonate-associate sulfate (CAS) extraction methods for sulfur isotope stratigraphy: a case study of a Lower–Middle Ordovician carbonate succession, Shingle Pass, Nevada, USA: Chemical Geology, v. 529, 119297.

19.  Adiatma*, Y.D., Saltzman, M.R., Young, S.A., Griffith, E.M., Kozik*, N.P., Edwards, C.T., Leslie, S.A., and Bancroft, A.M., 2019, Did early land plants produce a stepwise change in atmospheric oxygen centered in the Late Ordovician (Sandbian ~458 Ma)?: Palaeogeography, Palaeoclimatology,  Palaeoecology, v. 534, 109341.

18.  Stigall, A.L., Edwards, C.T., Freeman, R.L., and Rasmussen, C.M.Ø., 2019, Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event (GOBE): Darriwilian assembly of earliest Paleozoic building blocks: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 530, p. 249–270.

17.  Stigall, A.L., Freeman, R.L., Edwards, C.T., and Rasmussen, C.M.Ø., 2019, A multidisciplinary perspective on the Great Ordovician Biodiversification Event and the development of the early Paleozoic world: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 543, 109521.

16.  Edwards, C.T., 2019, Links between early Paleozoic oxygenation and the Great Ordovician Biodiversification Event (GOBE): a review: Palaeoworld, v. 28, p. 37–50.

15.  Welch, S., Sheets, J.M., Place, M.C., Saltzman, M.R., Edwards, C.T., Gupta, N., and Cole, D.R., 2019, Geochemical Monitoring of CO2 Injection into  an Oil-Bearing Reef in the Northern Michigan Basin, Applied Geochemistry, v. 100, p. 380–392.

14.  Liutkus-Pierce, C.M., Takashita-Bynum*, K., Beane*, L.A., Edwards, C.T., Burns, O.E., Mana, S., Hemming, S., Grossman, A., Wright, J.D., and  Kirera, F., 2019, Reconstruction of the early Miocene critical zone at Loperot, southwestern Turkana, Kenya: Frontiers, v. 7:44.

13.  Edwards, C.T., Fike, D.A., Saltzman, M.R., Lu, W., and Lu, Z., 2018, Evidence for local and global redox conditions at an Early Ordovician  (Tremadocian) mass extinction: Earth and Planetary Science Letters, v. 481, p. 125–135.

12.  Lu, W., Ridgewell, A., Thomas, E., Hardisty, D.S., Luo G., Algeo, T.J., Saltzman, M.R., Gill, B.C., Shen, Y., Ling, H.-F., Edwards, C.T., Whalen, M.T., Zhou, X., Gutchess, K.M., Jin, L., Rickaby, R.E.M., Jenkyns, H.C., Lyons, T.W., Lenton, T.M., Kump, L.R., and Lu, Z., 2018, Late evolution of a  resiliently oxygenated upper ocean: Science, v. 361 p. 174–177.

11.  Edwards, C.T., Saltzman, M.R., Royer, D.L., and Fike, D.A., 2017, Oxygenation as a driver of the Great Ordovician Biodiversification Event: Nature  Geoscience, v. 10 p. 925–929.

10.  Saltzman, M.R., and Edwards, C.T., 2017, Gradients in the carbon isotopic composition of Ordovician shallow water carbonates: a potential pitfall in  estimates of ancient CO2 and O2: Earth and Planetary Science Letters, v. 464, p. 46–54.

9.  Edwards, C.T., Saltzman, M.R., 2016, Paired carbon isotopic analysis of Ordovician bulk carbonate (𝜹13Ccarb) and organic matter (𝜹13Corg) spanning the Great Ordovician Biodiversification Event: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 458, p. 102–117.

8.  Young, S.A., Gill, B.C., Edwards, C.T., Saltzman, M.R., Leslie, S.A., 2016, Middle–Late Ordovician (Darriwilian–Sandbian) decoupling of global sulfur and carbon cycles: isotopic evidence from eastern and southern Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 458, p. 118–132.

7.  Edwards, C.T., Saltzman, M.R., Leslie, S.A., Bergström, S.M., Sedlacek, A.R.C., Howard, A., Bauer, J.A., Sweet, W.C., and Young, S.A., 2015,   Strontium isotope (87Sr/86Sr) stratigraphy of Ordovician bulk carbonate: implications for preservation of primary seawater values: Geological Society of America Bulletin, v. 127, p. 1275–1289.

6.  Saltzman, M.R., Edwards, C.T., Adrain, J.M., and Westrop, S.R., 2015, Persistence of oceanic anoxia and elevated extinction rates into the Early Ordovician: Geology, v. 43, p. 807–810.

5.  Hiatt, E.E., Pufahl, P.K., and Edwards, C.T., 2015, Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA: Sedimentary Geology, v. 319, p. 24–39.

4.  Saltzman, M.R., Edwards, C.T., Leslie, S.A., Dwyer, G.S., Bauer, J.A., Repetski, J.E., Harris, A.G., and Bergström, S.M., 2014, Calibration of a conodont apatite-based Ordovician 87Sr/86Sr curve to biostratigraphy and geochronology: implications for stratigraphic resolution: Geological Society of America Bulletin, v. 126, p. 1551­–1568.

3.  Edwards, C.T., and Saltzman, M.R., 2014, Carbon isotope (𝜹13Ccarb) stratigraphy of the Lower–Middle Ordovician (Tremadocian–Darriwilian) in the  Great Basin, western United States: implications for global correlation, Palaeogeography, Palaeoclimatology, Palaeoecology, v. 399, p. 1–20.

2.  Edwards, C.T., Pufahl, P.K., Hiatt, E.H., and Kyser, T.K., 2012, Paleoenvironmental and taphonomic controls on the occurrence of Paleoproterozoic  microbial communities in the 1.88 Ga Ferriman Group, Labrador Trough, Canada: Precambrian Research, v. 212-213, p. 91–106. 

1.  Pufahl, P, K., Hiatt, E, E., Stanley, C, R., Nelson, G, J., and Edwards, C.T., 2007, Proximal to distal ejecta in the Baraga Group, Michigan: physical and  chemical evidence of the 1850 Ma Sudbury Impact Event: Geology, v. 35 p. 827–830.