Research and Publications


Recent Publications:

  • Localized thermal spike driven morphology and electronic structure transformation in swift heavy ion irradiated TiO2 nanorods; Sutapa Dey, Anusmita Chakraborty, Shashi B Mishra, Nasima Khatun, Arnab Hazra, B R K Nanda, C Sudakar, D Kabiraj, Somnath C Roy; Nanoscale Advances, 4, 241 (2022) https://doi.org/10.1039/D1NA00666E

  • Ti3C2Tx MXene functionalization induced enhancement of photoelectrochemical performance of TiO2 nanotube arrays; Nasima Khatun, Sutapa Dey, Govinda C. Behera, Somnath C. Roy, Materials Chemistry and Physics 278, 125651 (2022)

https://doi.org/10.1016/j.matchemphys.2021.125651

  • Development of CdTe quantum dot supported ZnIn2S4 hierarchical microflowers for improved photocatalytic activity; R Janani, S Sumathi, B Gupta, Somnath C Roy, Shubra Singh et al Journal of Environmental Chemical Engineering 10, 107030 (2022) https://doi.org/10.1016/j.jece.2021.107030

  • Space charge limited conduction in anatase and mixed-phase (anatase/rutile) single TiO2 nanotubes Sourav K Kajli, Debdutta Ray, Somnath C Roy; Physical E: Low Dimensional Systems and Nanostructures, 136, 115030 (2022)

https://doi.org/10.1016/j.physe.2021.115030

  • Multiferroic, optical and magneto-dielectric properties with enhanced magneto-impedance characteristic of KBiFe2O5; B Khan, M K Singh, A Kumar, A Pandey, S Dwivedi, U Kumar, Surbhi Ramawat, S Kukreti, A Dixit, Somnath C.Roy; Journal of Alloys and Compounds, 893,162225 (2022) https://doi.org/10.1016/j.jallcom.2021.162225

  • Efficient UV-visible Photodetector Based on Single CuO/Cu2O Core-shell Nanowire

Sourav K Kajli, Debdutta Ray, Somnath C Roy Journal of Alloys and Compounds, 895, 162546 (2021)

https://doi.org/10.1016/j.jallcom.2021.162546

  • Enhanced H2 evolution through water splitting using TiO2/ultrathin g-C3N4: a type II heterojunction photocatalyst fabricated by in-situ thermal exfoliation

Nasima Khatun, Sutapa Dey, Tamilselvan Appadurai, Aravind K Chandiran, Somnath C Roy

Applied Physics Letters, 119 (9), (2021), https://doi.org/10.1063/5.0061923


Publications :


1. Highly efficient photoelectrochemical ZnO and TiO2 nanorod/Sb2S3 heterostructured photoanodes through one step thermolysis of Sb-MPA complex

V Sharma, A C Dakshinamurthy, B Pandey, Somnath C Roy, C Sudakar

Solar Energy, 225, 333 (2021) https://doi.org/10.1016/j.solener.2021.07.045

2. Adsorption and degradation mechanism of 2,4,6-trinitrotoluene on TiO2 (110) surface

Shashi B. Mishra, S. Marutheeswaran, Somnath C. Roy, V. Natarajan, P. K. Rai, B.R.K. Nanda

Surface Science, 713, 121902 (2021) https://doi.org/10.1016/j.susc.2021.121902

3. Anomalous diameter dependent electrical transport in individual CuO nanowire

SK Kajli, D Ray and Somnath C Roy

Journal of Physics D: Applied Physics, 54(25), 255104 (2021)

https://doi.org/10.1088/1361-6463/abeeb8

4. Influence of Ce doping on morphology, crystallinity and photoelectrochemical charge transfer characteristics of TiO2 nanorod arrays grown on conductive glass substrate

Sutapa Dey and Somnath C Roy

Journal of Alloys and Compounds, 881, 160481 (2021)

https://doi.org/10.1016/j.jallcom.2021.160481

5. Investigation of Photo-induced enhancement of sensitivity and electro-chemical surface phenomenon of multileg TiO2 nanotubes sensor device towards H2O2

P Chithra Lekha, Y Rambabu, V T Fidal Kumar, T S Chandra, Somnath C Roy

Journal of Electroanalytical Chemistry, 895, 115399, (2021)

https://doi.org/10.1016/j.jelechem.2021.115399

6. Designing TiO2 nanostructures through hydrothermal growth: influence of process parameters and substrate position

Sutapa Dey, Somnath C Roy

Nano Express, 2, 010028 (2021) https://doi.org/10.1088/2632-959X/abe844

7. Hydrothermal temperature-controlled size and distribution of CeO2 nanoparticles over TiO2 nanorods: heterojunction characteristics and photoelectrochemical performance

Sutapa Dey, Somnath C Roy

Ceramics International 47 (10), 14603, (2021) https://doi.org/10.1016/j.ceramint.2021.02.043

8. Morphology dependent electrical conduction and breakdown in single TiO2 nanotubes

SK Kajli, D Ray, Somnath C Roy

Nanoscale Advances 3 (2), 432-445 (2021) https://doi.org/10.1039/d0na00713g

9. Electronic structure of graphene/TiO2 interface: Design and functional perspectives

SB Mishra, Somnath C Roy, BRK Nanda

Applied Surface Science 542, 148709 (2021) https://doi.org/10.1016/j.apsusc.2020.148709

10. Effect of oxygen nonstoichiometry on the photoelectrochemical performance of oxide-nanorod based TiO2/Sb2S3 and ZnO/Sb2S3 heterostructured photoanodes

V Sharma, AC Dakshinamurthy, B Pandey, Somnath C Roy, C Sudakar

Nano Express 1 (3), 030038 (2020) https://doi.org/10.1088/2632-959X/abd2d3

11. TiO2 Nanotube Arrays on Flexible Kapton Substrates for Photo-Electrochemical Solar Energy Conversion,

Samba S Vadla, Payel Bandyopadhyay, Subish John, Pijush Ghosh, Somnath C Roy,

ACS Applied Nano Materials 3(12) 11715-11724 (2020) https://dx.doi.org/10.1021/acsanm.0c02028

12. Template-free fabrication of BiFeO3 nanorod arrays: multiferroic and photoelectrochemical performances

Swati Dhua, H Furono, T Homma, N Saito, Somnath C Roy

Nanotechnology, 31, 355602 (2020), https://doi.org/10.1088/1361-6528/ab9132

13. A scalable approach for functionalization of TiO2 nanotube arrays with g-C3N4 for enhanced photoelectrochemical performance

Beauty Pandey, Sanju Rani, Somnath C Roy,

Journal of Alloys and Compounds, 846, 155881 (2020) https://doi.org/10.1016/j.jallcom.2020.155881

14. Mechanistic understanding of NO2 dissociation on rutile TiO2 (110) surface: an electronic structure study;

S Marutheeswaran, Shashi B Mishra, Somnath C Roy, B R K Nanda;

Journal of Physical Chemistry C, 124, 8786-8794 (2020) https://dx.doi.org/10.1021/acs.jpcc.0c00525

15. High Photoelectrochemical performance of reduced graphene oxide wrapped, CdS functionalized, TiO2 multileg nanotubes;

Y Rambabu, Swati Dhua, Manu Jaiswal, Somnath C Roy

Nanotechnology 31, 275701 (2020) https://doi.org/10.1088/1361-6528/ab84a0

16. Charge transfer mediated photoluminescence enhancement in carbon dots embedded in TiO2 nanotube matrix;

Anu B, B Pandey, Somnath C Roy, Jayeeta Bhattacharya

Carbon 161, 535-541 (2020) https://doi.org/10.1016/j.carbon.2020.01.097

  1. Cu2O/CuO nanowire/nanoflake heterojunction with the enhanced surface area for photoelectrochemical conversion of solar energy,

Subish John and Somnath C Roy,

Applied Surface Science, 509, 144703, (2020). https://doi.org/10.1016/j.apsusc.2019.144703

  1. Unravelling atomically resolved structure of a high-k dielectric oxide-semiconductor interface: Exit wave reconstruction and ab-initio calculation insights.

Mahabul Islam, Piu Rajak, Satyesh Yadav, Somnath C Roy, Somnath Bhattacharyya,

Journal of Alloys and Compounds 813, 152232 (2020) https://doi.org/10.1016/j.jallcom.2019.152232

  1. Direct growth of self-aligned single-crystalline GaN nanorod array on flexible Ta foil for photocatalytic solar water-splitting

P. Tyagi, C. Ramesh, J. Kaswan, S. Dhua, S. John, A.K. Shukla, Somnath C Roy, S.S. Kushvaha, S.K. Muthusamy,

Journal of Alloys and Compounds 805, 97, (2019) https://doi.org/10.1016/j.jallcom.2019.07.071.

  1. High photoelectrochemical activity of CuO nanoflakes grown on Cu foil

Subish John, Samba Siva Vadla, Somnath C Roy;

Electrochimica Acta, 319, 390, (2019). https://doi.org/10.1016/j.electacta.2019.07.008

  1. Photocatalytic reduction of CO2 using graphene oxide wrapped TiO2 nanotubes;

Y Rambabu, Umesh Kumar, Nikita Singhal, Meenal Kaushal, Manu Jaiswal, Suman Lata Jain, Somnath C Roy;

Applied Surface Science; 485, 48 (2019) https://doi.org/10.1016/j.apsusc.2019.04.041

  1. Quantum-mechanical process of carbonate complex formation and large-scale anisotropy in the adsorption energy of CO2 on anatase TiO2 (001) surface,

Shashi B Mishra, Aditya Chaudhary, Somnath C Roy, B R K Nanda;

Physical Review Materials 2, 115801, (2018) https://doi.org/10.1103/PhysRevMaterials.2.115801

  1. An improved strategy for transferring and adhering thin nanoporous alumina membrane onto conducting transparent electrodes for template assisted electrodeposition of high aspect-ratio semiconductor nanowires with increased optical absorption,

H S Bindra, A B V Kiran Kumar, Tushar Kumeria, Somnath C Roy, Ranu Nayak, Nanotechnology 30, (2019) https://doi.org/10.1088/1361-6528/aae6e4

  1. Local probing of magnetoelectric coupling in BaTiO3-Ni 1-3 composites

Samba Siva Vadla, Tommaso Costanzo, Subish John, Gabriel Caruntu, Somnath C. Roy;

Scripta Materialia 159, 33 (2019) https://doi.org/10.1016/j.scriptamat.2018.09.003

  1. Chemicapacitive gas sensors based on TiO2 and BaTiO3 nanotube arrays;

B Manmadha Rao and Somnath C Roy,

Sensor Letters, 16, (2) (2018), https://doi.org/10.1166/sl.2018.3922

  1. Controlled and selective growth of 1D and 3D CdTe nanostructures through a structurally engineered porous alumina template for enhanced optical applications;

H S Bindra, Subish John, Somnath C Roy, O P Sinha, S S Islam, Ranu Nayak

Journal of the Electrochemical Society 165 (4) H3061-H3068 (2018). https://doi.org/10.1149/2.0091804jes

  1. Photo-electrochemical properties of hierarchically branched, graphene wrapped nanostructures obtained through hydrothermally transformed TiO2 nanotubes;

Y Rambabu, Manu Jaiswal, Somnath C Roy,

Nanotechnology, 28, 405706 (2017) https://doi.org/10.1088/1361-6528/aa8355

  1. Probing the charge recombination in rGO decorated TiO2 nanotube arrays

Y. Rambabu, Manu Jaiswal, Somnath C Roy,

AIP Advances, 6, 115010, (2016) https://doi.org/10.1063/1.4967387.

29 Modified photoelectrochemical and photo-voltaic properties of solvothermally crystallised TiO2 nanotube arrays;

B Mamnadha Rao, Mukta Tathavadekar, C. Venkatrao, Somnath C Roy;

Journal of Materials Science: Materials in Electronics, 12427-12437, (2016) https://doi.org/10.1007/s10854-016-5248-0

30. Enhanced photoelectrochemical properties of reduced graphene oxide wrapped TiO2 multileg nanotubes

Y Rambabu, Manu Jaiswal, Somnath C Roy

Journal of the Electrochemical Society, 163 (8) H652-H656 (2016) https://doi.org/10.1149/2.0351608jes

31.Effect of annealing temperature on phase transformation, structural stability and photoelectrochemical performance of TiO2 multileg nanotubes.

Y Rambabu, Manu Jaiswal, Somnath C Roy,

Catalysis Today. 278, 255-261 (2016) https://doi.org/10.1016/j.cattod.2016.01.016

32. Photoelectrochemical properties of reduced graphene oxide modified TiO2 micro-whiskers.

Y Rambabu, Manu Jaiswal, Somnath C Roy,

Journal of Nanoscience and Nanotechnology, 16, 4835, (2016). https://doi.org/10.1166/jnn.2016.12072

33.Enhanced photoelectrochemical characteristics of multileg TiO2 nanotube arrays through efficient light harvesting.

Y. Rambabu, Manu Jaiswal, Somnath C Roy,

Journal of Physics D: Applied Physics 48, 295302 (2015)

https:/doi.org/10.1088/0022-3727/48/29/295302

34. Water assisted crystallization, gas sensing and photoelectrochemical properties of electrochemically synthesized TiO2 nanotube arrays;

B. M. Rao and Somnath C. Roy;

RSC Advances; 4, 49108, (2014). https://doi.org/10.1039/c4ra06842d

35 Anatase TiO2 nanotube arrays with high temperature stability;

B. M. Rao and Somnath C Roy;

RSC Advances 4, 38133, (2014). https://doi.org/10.1039/c4ra05882h

36 Solvothermal processing of amorphous TiO2 nanotube arrays: achieving crystallinity at a lower thermal budget;

B. M. Rao and Somnath C. Roy;

Journal of Physical Chemistry C, 118, 1198-1206, (2014).

https://doi.org/10.1021/jp406930y

37 Solar spectrum photocatalytic conversion of CO2 and water vapour into hydrocarbons using TiO2 nanoparticles membranes;

Sanju Rani, N. Z. Bao, Somnath C Roy

Applied Surface Science 289, 203-208 (2014). https://doi.org/10.1016/j.apsusc.2013.10.135

38 Theory, instrumentation and applications of magnetoelastic resonance sensors: A review;

Craig A. Grimes, Somnath C. Roy, Sanju Rani, Q. Y. Cai

Sensors 11,2809-2844 (2011). https://doi.org/ 10.3390/s110302809

39 Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons

Somnath C. Roy, Oomman K. Varghese, Maggie Paulose, and Craig A. Grimes;

ACS Nano, 4, p1259 (2010) https://doi.org/10.1021/nn9015423

40 Synthesis and applications of electrochemically self-assembled titania nanotube arrays

Sanju Rani, Somnath C. Roy, Maggie Paulose, Oomman K. Varghese, Gopal K. Mor, Sanghoon Kim, Sorachon Yoriya, Thomas J. LaTempa, C. A. Grimes;

Phys. Chem. Chem. Phys. 12, p 2780, (2010) https://doi.org/10.1039/b924125f

41 Enhancement of ammonia sensitivity in swift heavy ion irradiate nanocrystalline SnO2 thin films,

Sanju Rani, Somnath C. Roy, N. K. Puri, M. C. Bhatnagar, D. Kanjilal

Journal of Nanomaterials, p 4 (2008) https://doi.org/10.1155/2008/395490

42 p-Type gas sensing behaviour of undoped SnO2 thin films irradiated with a high energy ion beam

Sanju Rani, M. C. Bhatnagar, Somnath C. Roy, N. K. Puri, D. Kanjilal;

Sensors and Actuators B, 135, p 35 (2008) https://doi.org/10.1016/j.snb.2008.07.014

43 A wireless magnetoelastic biosensor for the selective detection of low-density lipoprotein (LDL) particles

X. Feng, Somnath C. Roy, G. K. Mor, C. A. Grimes;

Sensor Letters 6, p 359 (2008). https://doi.org/10.1166/sl.2008.051

44 The equation of motion, impedance, and equivalent circuit model for a magnetoelastic resonance sensor

C. S. Mungle, Somnath C. Roy, C. A. Grimes;

Sensor Letters 6, p 421 (2008). https://doi.org/10.1166/sl.2008.052

45 Effect of swift heavy ion irradiation on structure, optical, and gas sensing properties of SnO2 thin films

Sanju Rani, N. K. Puri, Somnath C. Roy, M. C. Bhatnagar, D. Kanjilal

Nuclear Instruments and Methods in Physics Research (NIM)B, 266, p 1987 (2008)

https://doi.org/10.1016/j.nimb.2008.02.062

46 Use of magnetoelastic sensors for quantifying platelet aggregation II: Distinguishing contributions of fibrin and thrombin to the coagulation kinetics of whole blood

Somnath C. Roy, J. R. Werner, G. Mambrini, C. A. Grimes;

Sensor Letters, 6, p 285 (2008) https://doi.org/10.1166/sl.2008.035

47 Use of magnetoelastic sensors for quantifying platelet aggregation I: Whole blood and platelet rich plasma

Somnath C. Roy, J. R. Werner, D. Kouzoudis, C. A. Grimes;

Sensor Letters, 6, p 280 (2008) https://doi.org/10.1166/sl.2008.034

48 Eliminating unwanted nanobubbles from hydrophobic solid/liquid interfaces: A case study using magnetoelastic sensors

X. Feng, Somnath C. Roy, C. A. Grimes;

Langmuir, 24, p 3918 (2008) https://doi.org/10.1021/la703572z

49 Structure, ferroelectric, and gas sensing properties of sol-gel derived (Ba,Sr)(Ti,Zr)O3 thin films

M. Kumar, S. Rani, M. C. Bhatnagar, Somnath C. Roy;

Materials Chemistry and Physics; 107, p 399 (2008)

https://doi.org/10.1016/j.matchemphys.2007.08.010

50 An analysis on the effect of sensor configuration and geometry of the magnetoelastic resonance sensors operating in air

C. S. Mungle, Somnath C. Roy, C. A. Grimes;

Sensor Letters, 6, p 137 (2008) https://doi.org/10.1166/sl.2008.025

51 The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage

Somnath C. Roy, Maggie Paulose, Craig A Grimes;

Biomaterials, 28, p 4667, (2007) https://doi.org/10.1016/j.biomaterials.2007.07.045

52 Quantification of blood clotting kinetics I: Determination of activated clotting times as a function of heparin concentration using magnetoelastic sensors

K. Zeng, Somnath C. Roy, C. A. Grimes;

Sensor Letters 5, p 1 (2007) https://doi.org/10.1166/sl.2007.217

53 Quantification of blood clotting kinetics II: Thromboelastograph analysis and measurement of erythrocyte sedimentation rate using magnetoelastic sensors

Somnath C. Roy, K. G. Ong, K. Zeng, C. A. Grimes;

Sensor Letters 5, p8 (2007) https://doi.org/10.1166/sl.2007.218

54 Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature

J. Kaur, Somnath C. Roy, M. C. Bhatnagar;

Sensors and Actuators B, 123, p 1090 (2007) https://doi.org/10.1016/j.snb.2006.11.031

55 Large blue shift in the optical band-gap of sol-gel derived BST thin films

Somnath C Roy, G. L. Sharma, M. C. Bhatnagar;

Solid State Communications141, p 243 (2007)

https://doi.org/10.1016/j.ssc.2006.11.007

56 Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films

Sanju Rani, N. Karar, Somnath C. Roy, M. C. Bhatnagar;

Solid State Communications 141, p 214 (2007)

https://doi.org/10.1016/j.ssc.2006.10.036

57 Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films Sanju Rani, Somnath C. Roy, M. C. Bhatnagar;

Sensors and Actuators B 122, p 204 (2007)

https://doi.org/10.1016/j.snb.2006.05.032

58 Dependence of ac and dc conduction on the pre-sintering temperature in sol-gel derived Ba0.5Sr0.5TiO3 thin films

Somnath C. Roy, M. C. Bhatnagar, G. L. Sharma, R. Manchanda, V. R. Balakrishnan, S. B. Samanta;

Materials Chemistry and Physics 100, p 404 (2006)

https://doi.org/10.1016/j.matchemphys.2006.01.042

59 Study of dielectric and pyroelectric properties of sol-gel derived (Ba,Sr)TiO3 thin films

Manoj Kumar, Somnath C. Roy, S. Agarwal, G. L. Sharma, M. C. Bhatnagar;

Ferroelectrics, 329, p 33 (2005) https://doi.org/10.1080/00150190400315012

60 Novel ammonia sensing phenomena in sol-gel derived Ba0.5Sr0.5TiO3 thin films

Somnath C. Roy, M. C. Bhatnagar, G. L. Sharma, S. B. Samanta;

Sensors and Actuators B,110, p 299 (2005) https://doi.org/10.1016/j.snb.2005.02.030

61 Photoluminescence study of the sol-gel derived Ba0.5Sr0.5TiO3 thin films for the characterization of trap states

Somnath C. Roy, M. C. Bhatnagar, G. L. Sharma, N. Karar, Harish Chander;

Japanese Journal of Applied Physics; 44, p 34 (2005).

https://doi.org/10.1143/JJAP.44.34

62 Effect of pH on electrical and optical properties of sol-gel derived microcrystalline Ba0.5Sr0.5TiO3 thin films

Somnath C. Roy, M. C. Bhatnagar, G. L. Sharma, R. Manchanda, V. R. Balakrishnan, S. B. Samanta;

Applied Surface Science, 236, p 306(2004) https://doi.org/10.1016/j.apsusc.2004.05.017

63 Effect of pre-sintering temperature on the structural and dielectric properties of sol-gel derived (Ba0.5Sr0.5)TiO3 thin films

Somnath C. Roy, M. C. Bhatnagar, G. L. Sharma, R. Manchanda, V. R. Balakrishnan

Ceramics International. 30, p 2283 (2004)

https://doi.org/10.1016/j.ceramint.2004.01.008