For the free to read arXiv versions, click at the button 

Publications 

[17]  D. Möckli, M. K. de Azambuja. Magnetic superconductivity. Revista Brasileira de Ensino de Física, vol. 46, suppl. 1, e20240094 (2024). https://doi.org/10.1590/1806-9126-RBEF-2024-0094

[16] G. Sant'ana, D. Möckli, A. da Cas Viegas, P. Pureur, M. A. Tumelero. Ni/Bi bilayers: The effect of thickness on the superconducting properties. J. Appl. Phys. 135, 043905 (2024). https://doi.org/10.1063/5.0182758

[15] E. F. da Nova Cruz, D. Möckli. Quantum theories with local information flow.  Braz J Phys 54, 16 (2024).
https://doi.org/10.1007/s13538-023-01386-7 

[14] M. Kuzmanović, T. Dvir, D. LeBoeuf, S. Ilić, D. Möckli, M. Haim, S. Kraemer, M. Khodas, M. Houzet, J. S. Meyer, M. Aprili, H. Steinberg, C. H. L. Quay. Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic field: Ising protection and triplet superconductivity. Phys. Rev. B 106, 184514 (2022). https://doi.org/10.1103/PhysRevB.106.184514 

[13] Möckli, D. Unconventional singlet-triplet superconductivity. J. Phys.: Conf. Ser. 2164 012009 (2022). (The arXiv version  is better)
https://doi.org/10.1088/1742-6596/2164/1/012009 

[12] Möckli, D., Ramires, A. Superconductivity in disordered locally noncentrosymmetric materials: an application to CeRh2As2. Phys. Rev. B 104, 134517 (2021). https://doi.org/10.1103/PhysRevB.104.134517 

[11] Möckli, D., Ramires, A. Two scenarios for superconductivity in CeRh2As2. Phys. Rev. Research 3, 023204 (2021). https://doi.org/10.1103/PhysRevResearch.3.023204 

[10] Haim, M., Möckli, D., & Khodas, M. Signatures of triplet correlations in density of states of Ising superconductors. Phys. Rev. B 102, 214513 (2020). https://doi.org/10.1103/PhysRevB.102.214513 

[9] Möckli, D., Haim, M., & Khodas, M. Magnetic impurities in thin films and 2D Ising superconductors. Journal of Applied Physics 128, 053903 (2020). https://doi.org/10.1063/5.0010773 

[8] Möckli, D., & Khodas, M. Ising superconductors: Interplay of magnetic field, triplet channels, and disorder. Phys. Rev. B 101, 014510 (2020). https://doi.org/10.1103/PhysRevB.101.014510 

[7] Möckli, D., & Khodas, M. Magnetic-field induced s+if pairing in Ising superconductors. Phys. Rev. B 99, 180505(R) (2019). https://doi.org/10.1103/PhysRevB.99.180505 

[6] Möckli, D., & Khodas, M. Robust parity-mixed superconductivity in disordered monolayer transition metal dichalcogenides. Physical Review B, 98, 144518 (2018).  https://doi.org/10.1103/PhysRevB.98.144518 

[5] Möckli, D., Yanase, Y., & Sigrist, M.  Orbitally limited pair-density-wave phase of multilayer superconductors. Physical Review B, 97(14), 144508 (2018).  https://doi.org/10.1103/PhysRevB.97.144508 

[4] Möckli, D., & de Mello, E. V. L. The Ba0.6K0.4Fe2As2 superconducting four-gap temperature evolution: A multi-band Chebyshev–BdG approach. Physics Letters, Section A: General, Atomic and Solid State Physics, 380(33), 2565–2569 (2016). https://doi.org/10.1016/j.physleta.2016.05.054 

[3] de Mello, E. V. L., & Möckli, D.  Charge order and resistivity transition of Zn-doped cuprate superconductors. Journal of Physics: Condensed Matter, 27, 095702 (2015). https://doi.org/10.1088/0953-8984/27/9/095702 

[2] Möckli, D., & de Mello, E. V. L. Effective three-band structure in Fe-based superconductors. EPL, 109, 17011 (2015). https://doi.org/10.1209/0295-5075/109/17011 

[1] de Mello, E. V. L., & Möckli, D.  Weak magnetic order in high-T c superconductors produced by spontaneous Josephson currents. Europhys. Lett., 102(1), 17008 (2013).  https://doi.org/10.1209/0295-5075/102/17008