Scientific portfolio

Multidimensional science

I am inspired by ambitious projects and multidisciplinary science. I coordinated 8 third-party funded projects (including 3 international linkage programmes). I am founding member and the main coordinator of the Soil BON Foodweb Team and #GlobalCollembola initiatives. I am founding member and the main curator of IsoFauna and Ecotaxonomy databases.

I am Editor-in-Chief of Soil Organisms and invited edtor at the European Journal of Soil Biology and Applied Soil Ecology. I reviewed over 70 papers in international journals including Nature Ecology & Evolution, Functional Ecology, The American Naturalist, Global Change Biology among others.

I attended over 25 international conferences with oral talks, including 3 keynotes, organised several conference sessions and workshops and communicated science in various ways.

I published over 70 papers in international reputable peer-reviewed journals including Nature, Nature Communications, Biological reviews, Frontiers in Ecology and the Environment, The American Naturalist, Journal of Animal Ecology, Functional Ecology, Soil Biology and Biochemistry, Ecology and others. 

Featured publications

Size structure of food webs in water and on land

Potapov, A., Brose, U., Scheu, S., Tiunov, A., 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. The American Naturalist 194(6), 823-839. doi:10.1086/705811

https://dx.doi.org/10.1086/705811

Do large organisms occupy higher trophic levels? Predators are often larger than their prey in food chains, but empirical evidence for positive body mass – trophic level scaling for entire food webs mostly comes from marine communities based on unicellular producers. Using published data on stable isotope compositions of 1093 consumer species, we explored how trophic level scales with body size, food-web type (green vs. brown) and phylogenetic group across biomes. In contrast to widespread assumptions, the relationship between body size and trophic level of consumers, from protists to large vertebrates, was not significant per se, but varied among ecosystem types and animal groups. The correlation between body size and trophic level was strong in marine, weak in freshwater and absent in terrestrial consumers, which was observed also at the scale of local food webs. Vertebrates occupied higher trophic positions than invertebrates and green trophic chains were longer than brown ones in aquatic (primarily marine) but not in terrestrial food webs. Variations in body size of top predators suggest that terrestrial and many freshwater food webs are size-compartmentalized, implying different trophic dynamics and responses to perturbations than in size-structured marine food webs.

Figure. Size structure in idealised food webs. Shown are size-structured marine food webs based on unicellular producers (dark blue), size- compartmentalised terrestrial food webs based on multicellular producers (green), and freshwater food webs with interjacent size structure (cyan). 

Who feeds on whom and what in soil?

Potapov, A., Beaulieu, F., Birkhofer, K., Bluhm, S.L., Degtyarev, M.I., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D.F., Maraun, M., Mc Donnell, R.J., Pollierer, M.M., Schaefer, I., Shrubovych, J., Semenyuk, I.I., Sendra, A., Tuma, J., Tůmová, M., Vassilieva, A.B., Chen, T.-W., Geisen, S., Schmidt, O., Tiunov, A., Scheu, S., 2022. Feeding habits and multifunctional classification of belowground consumers from protists to vertebrates. Biological Reviews 

https://doi.org/10.1111/brv.12832 

Soil organisms drive major ecosystem functions by mineralising carbon and releasing nutrients during decomposition processes, which supports plant growth, aboveground biodiversity and, ultimately, human nutrition. Soil ecologists often operate with functional groups to infer the effects of individual taxa on ecosystem functions and services. Simultaneous assessment of the functional roles of multiple taxa is possible using food-web reconstructions, but our knowledge of the feeding habits of many taxa is insufficient and often based on limited evidence. Over the last two decades, molecular, biochemical and isotopic tools have improved our understanding of the feeding habits of various soil organisms, yet this knowledge is still to be synthesised into a common functional framework. Here, we provide a comprehensive review of the feeding habits of consumers in soil, including protists, micro-, meso- and macrofauna (invertebrates), and soil-associated vertebrates. We have integrated existing functional group classifications with findings gained with novel methods and compiled an overarching classification across taxa focusing on key universal traits such as food resource preferences, body masses, microhabitat specialisation, protection and hunting mechanisms. Our summary highlights various strands of evidence that many functional groups commonly used in soil ecology and food-web models are feeding on multiple types of food resources. In many cases, omnivory is observed down to the species level of taxonomic resolution, challenging realism of traditional soil food-web models based on distinct resource-based energy channels. Novel methods, such as stable isotope, fatty acid and DNA gut content analyses, have revealed previously hidden facets of trophic relationships of soil consumers, such as food assimilation, multichannel feeding across trophic levels, hidden trophic niche differentiation and the importance of alternative food/prey, as well as energy transfers across ecosystem compartments. Wider adoption of such tools and the development of open interoperable platforms that assemble morphological, ecological and trophic data as traits of soil taxa will enable the refinement and expansion of the multifunctional classification of consumers in soil. The compiled multifunctional classification of soil-associated consumers will serve as a reference for ecologists working with biodiversity changes and biodiversity–ecosystem functioning relationships, making soil food-web research more accessible and reproducible.

Figure. Overview of food resources, vertical distribution and body mass for dominant consumer taxa in soil. Large dots denote primary resources, small dots auxiliary resources. Colours delineate energy channels: green, grazing [plants (P) and algae (A)]; grey, detrital [litter (L), dead wood (W) and soil (S)]; dark yellow, microbial [bacteria (B) and fungi (F)]; dark orange, carnivory [feeding on other consumers (fauna, Fa)]. 

Soil food webs under tropical land-use change

Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R., Scheu, S., 2019. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology 88(12), 1845-1859. doi:10.1111/1365-2656.13027

https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2656.13027

Many ecosystem functions depend on the structure of food webs, which heavily relies on the body size spectrum of the community. Despite that, little is known on how the size spectrum of soil animals responds to agricultural practices in tropical land-use systems and how these responses affect ecosystem functioning. We studied land-use induced changes in belowground communities in tropical lowland ecosystems in Sumatra (Jambi province, Indonesia), a hotspot of tropical rainforest conversion to rubber and oil palm plantations. The study included ca. 30,000 measured individuals from 33 high-order taxa of meso- and macrofauna spanning eight orders of magnitude in body mass. Using individual body masses we calculated the metabolism of trophic guilds and used food-web models to calculate energy fluxes and infer ecosystem functions, such as decomposition, herbivory, primary and intraguild predation. Land-use change was associated with reduced abundance and taxonomic diversity of soil invertebrates, but strong increase in total biomass and moderate changes in total energy flux. These changes were due to increased biomass of large-sized decomposers in soil, in particular earthworms, with their share in community metabolism increasing from 11% in rainforest to 59-76% in jungle rubber, and rubber and oil palm plantations. Decomposition, i.e. the energy flux to decomposers, stayed unchanged, but herbivory, primary and intraguild predation decreased by an order of magnitude in plantation systems. Intraguild predation was very important, being responsible for 40% of the energy flux in rainforest according to our model. Our results suggest that the increase in large-sized primary consumers is sequestering energy at the base of the food web thereby restricting energy flux to higher trophic levels, and decreasing the abundance and diversity of predators. Pronounced differences between rainforest and jungle rubber reflected the sensitivity of rainforest soil animal communities to moderate land-use changes. Soil communities in plantation systems sustained high total energy flux despite the reduced biodiversity. The high energy flux into large decomposers but low energy fluxes to other trophic guilds suggests that trophic multifunctionality of belowground communities is compromised in plantation systems.

Figure. Changes in energy flux and biomass distribution between trophic guilds and levels in soil with conversion of rainforest into oil palm plantations. For each land-use system and layer a five-node food web was constructed with decomposers (light beige) receiving energy from detritus, herbivores (green) receiving energy from living plants, predators (red) receiving energy from other nodes and omnivores (blue) receiving energy from other nodes as well as basal resources. Circular energy fluxes in predators and omnivores reflect intraguild predation. Large decomposers (dark beige) do not provide energy to the higher trophic levels within the food-web. 

How to use stable isotopes in soil animal ecology?

Potapov, A.M., Tiunov, A.V., Scheu, S., 2019. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews 94, 37–59. doi:10.1111/brv.12434

https://onlinelibrary.wiley.com/doi/full/10.1111/brv.12434

Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13С-enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13С relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil-dwelling detritivores and litter-dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non-vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high-rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low-rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high-rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above- and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil-dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.

Figure. Isotopic map showing the main factors affecting bulk stable isotope values of C and N in soil animals. The ranges of δ13C and δ15N values typically occurring in soil animals are indicated along the horizontal and vertical axis, respectively (based on 95% ranges calculated in the compiled data set).

Publication list

2024

Potapov, A.M., Drescher, J., Darras, K., Wenzel, A., Janotta, N., Nazarreta, R., Kasmiatun, Laurent, V., Mawan, A., Utari, E.H., Pollierer, M.M., Rembold, K., Widyastuti, R., Buchori, D., Hidayat, P., Turner, E., Grass, I., Westphal, C., Tscharntke, T., Scheu, S., 2024. Rainforest transformation reallocates energy from green to brown food webs. Nature. https://doi.org/10.1038/s41586-024-07083-y 

Potapov, A.M., Chen, T.-W., Striuchkova, A.V., Alatalo, J.M., Alexandre, D., Arbea, J., Ashton, T., Ashwood, F., Babenko, A.B., Bandyopadhyaya, I., Baretta, C.R.D.M., Baretta, D., Barnes, A.D., Bellini, B.C., Bendjaballah, M., Berg, M.P., Bernava, V., Bokhorst, S., Bokova, A.I., Bolger, T., Bouchard, M., Brito, R.A., Buchori, D., Castaño-Meneses, G., Chauvat, M., Chomel, M., Chow, Y., Chown, S.L., Classen, A.T., Cortet, J., Čuchta, P., de la Pedrosa, A.M., De Lima, E.C.A., Deharveng, L.E., Doblas Miranda, E., Drescher, J., Eisenhauer, N., Ellers, J., Ferlian, O., Ferreira, S.S.D., Ferreira, A.S., Fiera, C., Filser, J., Franken, O., Fujii, S., Koudji, E.G., Gao, M., Gendreau-Berthiaume, B., Gers, C., Greve, M., Hamra-Kroua, S., Handa, I.T., Hasegawa, M., Heiniger, C., Hishi, T., Holmstrup, M., Homet, P., Høye, T.T., Ivask, M., Jacques, B., Janion-Scheepers, C., Jochum, M., Joimel, S., Jorge, B.C.S., Juceviča, E., Kapinga, E.M., Kováč, Ľ., Krab, E.J., Krogh, P.H., Kuu, A., Kuznetsova, N., Lam, W.N., Lin, D., Lindo, Z., Liu, A.W.P., Lu, J.-Z., Luciáñez, M.J., Marx, M.T., Mawan, A., McCary, M.A., Minor, M.A., Mitchell, G.I., Moreno, D., Nakamori, T., Negri, I., Nielsen, U.N., Ochoa-Hueso, R., Oliveira Filho, L.C.I., Palacios-Vargas, J.G., Pollierer, M.M., Ponge, J.-F., Potapov, M.B., Querner, P., Rai, B., Raschmanová, N., Rashid, M.I., Raymond-Léonard, L.J., Reis, A.S., Ross, G.M., Rousseau, L., Russell, D.J., Saifutdinov, R.A., Salmon, S., Santonja, M., Saraeva, A.K., Sayer, E.J., Scheunemann, N., Scholz, C., Seeber, J., Shaw, P., Shveenkova, Y.B., Slade, E.M., Stebaeva, S., Sterzynska, M., Sun, X., Susanti, W.I., Taskaeva, A.A., Tay, L.S., Thakur, M.P., Treasure, A.M., Tsiafouli, M., Twala, M.N., Uvarov, A.V., Venier, L.A., Widenfalk, L.A., Widyastuti, R., Winck, B., Winkler, D., Wu, D., Xie, Z., Yin, R., Zampaulo, R.A., Zeppelini, D., Zhang, B., Zoughailech, A., Ashford, O., Klauberg-Filho, O., Scheu, S., 2024. Global fine-resolution data on springtail abundance and community structure. Scientific Data 11, 22. https://doi.org/10.1038/s41597-023-02784-x 

Zhou, Z., Lu, J.-Z., Widyastuti, R., Scheu, S., Potapov, A.*, Krashevska, V., 2024. Plant roots are more strongly linked to microorganisms in leaf litter rather than in soil across tropical land-use systems. Soil Biology and Biochemistry 109320. https://doi.org/10.1016/j.soilbio.2024.109320 

Pollierer, M.M., Potapov, A., Zaitsev, A., 2024. Towards integrative analysis of abiotic and biotic drivers of soil biodiversity. Applied Soil Ecology 193, 105135. https://doi.org/10.1016/j.apsoil.2023.105135 

Quévreux, P., Brose, U., Galiana, N., Potapov, A., Thébault, É., Travers-Trolet, M., Wollrab, S., Jabot, F., 2024. Perspectives in modelling ecological interaction networks for sustainable ecosystem management. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14584 

Wan, B., Barnes, A.D., Potapov, A., Yang, J., Zhu, M., Chen, X., Hu, F., Liu, M., 2024. Altered litter stoichiometry drives energy dynamics of food webs through changing multiple facets of soil biodiversity. Soil Biology and Biochemistry 191, 109331. https://doi.org/10.1016/j.soilbio.2024.109331 

2023

Potapov, A.M., Guerra, C.A., van den Hoogen, J., Babenko, A., Bellini, B.C., Berg, M.P., Chown, S.L., Deharveng, L., Kovac, L., Kuznetsova, N.A., Ponge, J.-F., Potapov, M.B., Russell, D.J., Alexandre, D., Alatalo, J.M., Arbea, J.I., Bandyopadhyay, I., Bernava, V., Bokhorst, S., Bolger, T., Castano-Meneses, G., Chauvat, M., Chen, T.-W., Chomel, M., Classen, A.T., Cortet, J., Cuchta, P., de la Pedrosa, A.M., Ferreira, S.S.D., Fiera, C., Filser, J., Franken, O., Fujii, S., Gagnon koudji, E., Gao, M., Gendreau-Berthiaume, B., Gomez-Pamies, D.F., Greve, M., Handa, I.T., Heiniger, C., Holmstrup, M., Homet, P., Ivask, M., Janion-Scheepers, C., Jochum, M., Joimel, S., Jorge, B.C.S., Jucevica, E., Filho, L.C.I. de O., Klauberg-Filho, O., Baretta, D., Krab, E.J., Kuu, A., Lima, E.C.A., Lin, D., Liu, A., Lu, J.-Z., Lucianez, M.J., Marx, M.T., McCary, M.M., Minor, M.A., Nakamori, T., Negri, I., Ochoa-Hueso, R., Palacios-Vargas, J.G., Pollierer, M.M., Querner, P., Raschmanova, N., Rashid, M.I., Raymond-Leonard, L.J., Rousseau, L., Saifutdinov, R.A., Salmon, S., Sayer, E.J., Scheunemann, N., Scholz, C., Seeber, J., Shveenkova, Y.B., Stebaeva, S.K., Sterzynska, M., Sun, X., Susanti, W.I., Taskaeva, A.A., Thakur, M.P., Tsiafouli, M.A., Turnbull, M.S., Twala, M.N., Uvarov, A.V., Venier, L.A., Widenfalk, L.A., Winck, B.R., Winkler, D., Wu, D., Xie, Z.J., Yin, R., Zeppelini, D., Crowther, T., Eisenhauer, N., Scheu, S., 2023. Globally invariant metabolism but density-diversity mismatch in springtails. Nature Communications 14, 674. https://doi.org/10.1038/s41467-023-36216-6

Potapov, A., Lindo, Z., Buchkowski, R., Geisen, S., 2023. Multiple dimensions of soil food-web research: History and prospects. European Journal of Soil Biology 117, 103494. https://doi.org/10.1016/j.ejsobi.2023.103494 

Potapov, A.M., Buchkowski, R., Geisen, S., Lindo, Z., 2023a. Back and better: Soil food-web researchers integrate empirical data and develop novel tools. European Journal of Soil Biology 119, 103562. https://doi.org/10.1016/j.ejsobi.2023.103562 

Zhou, Z., Lu, J., Preiser, J., Widyastuti, R., Scheu, S., Potapov, A.*, 2023. Plant roots fuel tropical soil animal communities. Ecology Letters, ele.14191. https://doi.org/10.1111/ele.14191 

Le Guillarme, N., Hedde, M., Potapov, A.M., Martínez-Muñoz, C.A., Berg, M.P., Briones, M.J.I., Calderón-Sanou, I., Degrune, F., Hohberg, K., Martinez-Almoyna, C., Pey, B., Russell, D.J., Thuiller, W., 2023. The Soil Food Web Ontology: Aligning trophic groups, processes, resources, and dietary traits to support food-web research. Ecological Informatics 78, 102360. https://doi.org/10.1016/j.ecoinf.2023.102360 

Zemp, D.C., Guerrero-Ramirez, N., Brambach, F., Darras, K., Grass, I., Potapov, A., Röll, A., Arimond, I., Ballauff, J., Behling, H., Berkelmann, D., Biagioni, S., Buchori, D., Craven, D., Daniel, R., Gailing, O., Ellsäßer, F., Fardiansah, R., Hennings, N., Irawan, B., Khokthong, W., Krashevska, V., Krause, A., Kückes, J., Li, K., Lorenz, H., Maraun, M., Merk, M.S., Moura, C.C.M., Mulyani, Y.A., Paterno, G.B., Pebrianti, H.D., Polle, A., Prameswari, D.A., Sachsenmaier, L., Scheu, S., Schneider, D., Setiajiati, F., Setyaningsih, C.A., Sundawati, L., Tscharntke, T., Wollni, M., Hölscher, D., Kreft, H., 2023. Tree islands enhance biodiversity and functioning in oil palm landscapes. Nature. https://doi.org/10.1038/s41586-023-06086-5 

Iddris, N.A.-A., Formaglio, G., Paul, C., von Groß, V., Chen, G., Angulo-Rubiano, A., Berkelmann, D., Brambach, F., Darras, K.F.A., Krashevska, V., Potapov, A., Wenzel, A., Irawan, B., Damris, M., Daniel, R., Grass, I., Kreft, H., Scheu, S., Tscharntke, T., Tjoa, A., Veldkamp, E., Corre, M.D., 2023. Mechanical weeding enhances ecosystem multifunctionality and profit in industrial oil palm. Nature Sustainability. https://doi.org/10.1038/s41893-023-01076-x 

Zhang, A., Zhang, Y., Potapov, A.M., Ram Bhusal, D., Qiang, W., Wang, M., Pang, X., 2023. Changes in diversity and functional groups of soil mite communities are associated with properties of food resources along a subalpine secondary succession. Geoderma 432, 116395. https://doi.org/10.1016/j.geoderma.2023.116395 

Pollierer, M.M., Drescher, J., Potapov, A., Kasmiatun, Mawan, A., Mutiari, M., Nazarreta, R., Hidayat, P., Buchori, D., Scheu, S., 2023. Rainforest conversion to plantations fundamentally alters energy fluxes and functions in canopy arthropod food webs. Ecology Letters ele.14276. https://doi.org/10.1111/ele.14276 

Montoya-Sánchez, V., Kreft, H., Arimond, I., Ballauff, J., Berkelmann, D., Brambach, F., Daniel, R., Grass, I., Hines, J., Hölscher, D., Irawan, B., Krause, A., Polle, A., Potapov, A., Sachsenmaier, L., Scheu, S., Sundawati, L., Tscharntke, T., Zemp, D.C., Guerrero-Ramírez, N., 2023. Landscape heterogeneity and soil biota are central to multi-taxa diversity for oil palm landscape restoration. Communications Earth & Environment 4, 209. https://doi.org/10.1038/s43247-023-00875-6 

2022

Potapov, A.M., 2022. Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biological Reviews 97, 1691-1711. https://doi.org/10.1111/brv.12857 

Potapov, A.M., Birkhofer, K., Bluhm, S.L., Bryndova, M., Degtyarev, M., Devetter, M., Goncharov, A.A., Gongalsky, K.B., Klarner, B., Korobushkin, D.I., Liebke, D., Maraun, M., McDonnell, R., Pollierer, M.M., Schmidt, O., Schrubovich, J., Semenyuk, I.I., Sendra, A., Tuma, J., Vassilieva, A., Chen, T.-W., Beaulieu, F., Geisen, S., Tiunov, A.V., Scheu, S., 2022. Feeding habits and multifunctional classification of belowground consumers from protists to vertebrates. Biological Reviews 97, 1057-1117 https://doi.org/10.1111/brv.12832  

Potapov, A.M., Sun, X., Briones, M.J.I., Brown, G.G., Cameron, E.K., Chang, C.–H., Cortet, J., Eisenhauer, N., Franco, A., Fujii, S., Geisen, S., Guerra, C., Gongalsky, K., Haimi, J., Handa, I.T., Janion-Scheepers, C., Karaban, K., Lindo, Z., Mathieu, J., Moreno, M.L., Murvanidze, M., Nielsen, U.N., Scheu, S., Schneider, C., Seeber, J., Tsiafouli, M., Tuma, J., Tiunov, A.V., Zaytsev, A.S., Aschwood, F., Callaham, M., Wall, D.H., 2022. Global monitoring of soil animal communities using a common methodology. Soil Organisms 94, 55–68. https://doi.org/10.25674/so94iss1id178 (50)

Zhou, Z., Valentyna K., Rahayu W., Stefan S., Potapov, A.*, 2022. Tropical Land Use Alters Functional Diversity of Soil Food Webs and Leads to Monopolization of the Detrital Energy Channel. ELife 11, e75428. https://doi.org/10.7554/eLife.75428 

Krashevska, V., Stiegler, C., June, T., Widyastuti, R., Knohl, A., Scheu, S., Potapov, A.*, 2022. Land‐use change shifts and magnifies seasonal variations of the decomposer system in lowland tropical landscapes. Ecology and Evolution 12. https://doi.org/10.1002/ece3.9020

Antunes, A.C., Gauzens, B., Brose, U., Potapov, A.M., Jochum, M., Santini, L., Eisenhauer, N., Ferlian, O., Cesarz, S., Scheu, S., Hirt, M.R., 2022. Environmental drivers of local abundance–mass scaling in soil animal communities. Oikos e09735. https://doi.org/10.1111/oik.09735

Pashkevich, M.D., Luke, S.H., Aryawan, A.A.K., Waters, H.S., Caliman, J.-P., Dupérré, N., Naim, M., Potapov, A.M., Turner, E.C., 2022. Riparian buffers made of mature oil palms have inconsistent impacts on oil palm ecosystems. Ecological Applications, e2552. https://doi.org/10.1002/eap.2552  

Hedde, M., Blight, O., Briones, M.J.I., Bonfanti, J., Brauman, A., Brondani, M., Calderón Sanou, I., Clause, J., Conti, E., Cortet, J., Decaëns, T., Erktan, A., Gérard, S., Goulpeau, A., Iannelli, M., Joimel-Boulanger, S., Jouquet, P., Le Guillarme, N., Marsden, C., Martinez Almoyna, C., Mulder, C., Perrin, W., Pétillon, J., Pey, B., Potapov, A.M., Si-moussi, S., Thuiller, W., Trap, J., Vergnes, A., Zaitsev, A., Capowiez, Y., 2022. A common framework for developing robust soil fauna classifications. Geoderma 426, 116073. https://doi.org/10.1016/j.geoderma.2022.116073

Ferlian, O., Cesarz, S., Lochner, A., Potapov, A., Thouvenot, L., Eisenhauer, N., 2022. Earthworm invasion shifts trophic niches of ground-dwelling invertebrates in a North American forest. Soil Biology and Biochemistry 171, 108730. https://doi.org/10.1016/j.soilbio.2022.108730

Yin, R., Liu, Q., Tian, S., Potapov, A., Zhu, B., Yang, K., Li, Z., Zhuang, L., Tan, B., Zhang, L., Xu, Z., Kardol, P., Schädler, M., Eisenhauer, N., 2022. Nitrogen deposition stimulates decomposition via changes in the structure and function of litter food webs. Soil Biology and Biochemistry, 108522. https://doi.org/10.1016/j.soilbio.2021.108522  

Pompermaier, V.T., Potapov, A.M., Nardoto, G.B., 2022. Legacy effects of nutrient addition reduces and displaces trophic niches in Collembola communities in a Brazilian woodland savanna. Applied Soil Ecology 177, 104547. https://doi.org/10.1016/j.apsoil.2022.104547

Eisenhauer, N., Bender, S.F., Calderón‐Sanou, I., de Vries, F.T., Lembrechts, J.J., Thuiller, W., Wall, D.H., Zeiss, R., Bahram, M., Beugnon, R., Burton, V.J., Crowther, T.W., Delgado‐Baquerizo, M., Geisen, S., Kardol, P., Krashevska, V., Martínez‐Muñoz, C.A., Patoine, G., Seeber, J., Soudzilovskaia, N.A., Steinwandter, M., Sünnemann, M., Sun, X., van der Heijden, M.G.A., Guerra, C.A., Potapov, A.*, 2022. Frontiers in soil ecology—Insights from the World Biodiversity Forum 2022. Journal of Sustainable Agriculture and Environment sae2.12031. https://doi.org/10.1002/sae2.12031

Mathieu, J., Antunes, A.C., Barot, S., Bonato Asato, A.E., Bartz, M.L.C., Brown, G.G., Calderon-Sanou, I., Decaëns, T., Fonte, S.J., Ganault, P., Gauzens, B., Gongalsky, K.B., Guerra, C.A., Hengl, T., Lavelle, P., Marichal, R., Mehring, H., Peña-Venegas, C.P., Castro, D., Potapov, A., Thébault, E., Thuiller, W., Witjes, M., Zhang, C., Eisenhauer, N., 2022. sOilFauna - a global synthesis effort on the drivers of soil macrofauna communities and functioning. Soil Organisms 94, 111–126. https://doi.org/10.25674/SO94ISS2ID28 (40)

Potapov, M.B., Bokova, A.I., Janion-Scheepers, C., Kuznetsova, N.A., Merk, M.S., Panina, K.S., Potapov, A.M., Saraeva, A.K., 2022. Organic farming and moderate tillage change the dominance and spatial structure of soil Collembola communities but have little effects on bulk abundance and species richness. Soil Organisms 94, 99–110. https://doi.org/10.25674/SO94ISS2ID173

Caballero, A., Potapov, A., Rueda-Ramírez, D., Scheu, S., 2022. Five new records of soil scale insects (Hemiptera: Coccomorpha) for Indonesia. Soil Organisms 94, 85–98. https://doi.org/10.25674/so94iss2id183

2021

Potapov, A., Rozanova, O., Semenina, E., Leonov, V., Bogatyreva, V., Degtyarev, M., Esaulov, A., Korotkevich, A., Kudrin, A., Mazei, Yu., Tsurikov, S., Zuev, A., Tiunov, A., 2021. Size compartmentalisation of energy channeling in terrestrial belowground food webs. Ecology 102, e03421. https://doi.org/10.1002/ecy.3421 

Potapov, A., Pollierer, M.M., Salmon, S., Šustr, V., Chen, T-W., 2021. Multidimensional trophic niche revealed by complementary approaches: gut content, digestive enzymes, fatty acids and stable isotopes in Collembola. Journal of Animal Ecology 90, 1919–1933. https://doi.org/10.1111/1365-2656.13511  

Potapov, A., Schaefer, I., Jochum, M., Widyastuti, R., Eisenhauer, N., Scheu, S., 2021. Oil palm and rubber expansion facilitates earthworm invasion in Indonesia. Biological Invasions 23, 2783–2795. https://doi.org/10.1007/s10530-021-02539-y  

Susanti, W.I., Widyastuti, R., Scheu, S., Potapov, A.*, 2021. Trophic niche differentiation and utilisation of food resources in collembola is altered by rainforest conversion to plantation systems. PeerJ 9, e10971. https://doi.org/10.7717/peerj.10971  

Susanti, W.I., Bartels, T., Krashevska, V., Widyastuti, R., Deharveng, L., Scheu, S., Potapov, A.*, 2021. Conversion of rainforest into oil palm and rubber plantations affects the functional composition of litter and soil Collembola. Ecology and Evolution 11, 10686–10708. https://doi.org/10.1002/ece3.7881 

Krause, A., Sandmann, D., Potapov A.*, Ermilov S., Widyastuti R., Haneda N.F., Scheu S., Maraun M., 2021 Variation in community-level trophic niches of soil microarthropods with conversion of tropical rainforest into plantation systems as indicated by stable isotopes (15N, 13C). Frontiers in Ecology and Evolution 9, 263. https://doi.org/10.3389/fevo.2021.592149  

Yin, R., Liu, Q., Tian, S., Potapov, A., Zhu, B., Yang, K., Li, Z., Zhuang, L., Tan, B., Zhang, L., Xu, Z., Kardol, P., Schädler, M., Eisenhauer, N., 2021. Nitrogen deposition stimulates decomposition via changes in the structure and function of litter food webs. Soil Biology and Biochemistry 108522. https://doi.org/10.1016/j.soilbio.2021.108522 

2020

Potapov, A., Bonnier, R., Sandmann, D., Wang, S., Widyastuti, R., Scheu, S., Krashevska, V., 2020. Aboveground soil supports high levels of biological activity in oil palm plantations. Frontiers in Ecology and the Environment 18, 181–187. https://doi.org/10.1002/fee.2174  (30)

Potapov, A.M., Dupérré, N., Jochum, M., Dreczko, K., Klarner, B., Barnes, A.D., Krashevska, V., Rembold, K., Kreft, H., Brose, U., Widyastuti, R., Harms, D., Scheu, S., 2020. Functional losses in ground spider communities due to habitat-structure degradation under tropical land-use change. Ecology 101, e02957. https://doi.org/10.1002/ecy.2957  

Potapov, A., Bellini, B., Chown, S.L., Deharveng, L., Janssens, F., Kuznetsova, N., Ponge, J-F., Potapov, M., Querner, P., Russell, D., Sun, X., Zhang, F., Berg, M., 2020. Towards a global synthesis of Collembola knowledge – challenges and potential solutions. Soil Organisms 92, 161-188. https://doi.org/10.25674/so92iss3pp161  

Potapov. A.M., 2020. Springtails – worldwide jumpers. Frontiers for Young Minds 8, 545370. https://doi.org/10.3389/frym.2020.545370   

Salamon, J., Wissuwa, J., Frank, T., Scheu, S., Potapov, A.M.*, 2020. Trophic level and basal resource use of soil animals are hardly affected by local plant associations in abandoned arable land. Ecology and Evolution 10, 8279–8288. https://doi.org/10.1002/ece3.6535   

Zuev, A., Heidemann, K., Leonov, V., Schaefer, I., Scheu, S., Tanasevitch, A., Tiunov, A., Tsurikov, S., Potapov, A.*, 2020. Different groups of ground‐dwelling spiders share similar trophic niches in temperate forests. Ecological Entomology 45, 1346-1356. https://doi.org/10.1111/een.12918   

Grass, I., Kubitza, C., Krishna, V.V., Corre, M.D., Mußhoff, O., Pütz, P., Drescher, J., Rembold, K., Ariyanti, E.S., Barnes, A.D., Brinkmann, N., Brose, U., Brümmer, B., Buchori, D., Daniel, R., Darras, K.F.A., Faust, H., Fehrmann, L., Hein, J., Hennings, N., Hidayat, P., Hölscher, D., Jochum, M., Knohl, A., Kotowska, M.M., Krashevska, V., Kreft, H., Leuschner, C., Lobite, N.J.S., Panjaitan, R., Polle, A., Potapov, A.M., Purnama, E., Qaim, M., Röll, A., Scheu, S., Schneider, D., Tjoa, A., Tscharntke, T., Veldkamp, E., Wollni, M., 2020. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nature Communications 11, 1186. https://doi.org/10.1038/s41467-020-15013-5  

Li, Z., Scheunemann, N., Potapov, A.M., Shi, L., Pausch, J., Scheu, S., Pollierer, M.M., 2020. Incorporation of root-derived carbon into soil microarthropods varies between cropping systems. Biology and Fertility of Soils. https://doi.org/10.1007/s00374-020-01467-8   

2019

Potapov, A.M., Tiunov, A.V., Scheu, S., 2019. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biological Reviews 94, 37–59. https://doi.org/10.1111/brv.12434  

Potapov, A., Brose, U., Scheu, S., Tiunov, A., 2019. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. The American Naturalist 194(6), 823-839. https://doi.org/10.1086/705811  

Potapov, A.M., Klarner, B., Sandmann, D., Widyastuti, R., Scheu, S., 2019. Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology 88(12), 1845-1859. https://doi.org/10.1111/1365-2656.13027  [in focus paper] https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.13144 (20)

Potapov, A.M., Scheu, S., Tiunov, A.V., 2019. Trophic consistency of supraspecific taxa in belowground invertebrate communities: comparison across lineages and taxonomic ranks. Functional Ecology 33(6), 1172-1183. https://doi.org/10.1111/1365-2435.13309  

Potapov, A.M., Tiunov, A.V., Scheu, S., Larsen, T., Pollierer, M.M., 2019. Combining bulk and amino acid stable isotope analyses to quantify trophic level and basal resources of detritivores: a case study on earthworms. Oecologia 189(2), 447-460. https://doi.org/10.1007/s00442-018-04335-3  

Potapov, A., Sandmann, D., Scheu, S., 2019. Ecotaxonomy: Linking traits, taxa, individuals and samples in a flexible virtual research environment for ecological studies. Biodiversity Information Science and Standards 3, e37166. https://doi.org/10.3897/biss.3.37166  

Sandmann, D., Scheu, S., Potapov, A.*, 2019. Ecotaxonomy: Linking taxa with traits and integrating taxonomical and ecological research. Biodiversity Information Science and Standards 3, e37146. https://doi.org/10.3897/biss.3.37146  

Susanti, W.I., Pollierer, M.M., Widyastuti, R., Scheu, S., Potapov, A.*, 2019. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecology and Evolution 9, 9027–9039. https://doi.org/10.1002/ece3.5449  

Pollierer, M.M., Larsen, T., Potapov, A., Brückner, A., Heethoff, M., Dyckmans, J., Scheu, S., 2019. Compound‐specific isotope analysis of amino acids as a new tool to uncover trophic chains in soil food webs. Ecological Monographs 89(4), e01384. https://doi.org/10.1002/ecm.1384  

Darras, K., Corre, M.D., Formaglio, G., Tjoa, A., Potapov, A., Brambach, F., Sibhatu, K.T., Grass, I., Tscharntke, T., Angulo Rubiano, A., others, 2019. Reducing fertilizer and avoiding herbicides in oil palm plantations-ecological and economic valuations. Frontiers in Forests and Global Change 2, 65. https://doi.org/10.3389/ffgc.2019.00065 

Bluhm, S.L., Potapov, A.M., Shrubovych, J., Ammerschubert, S., Polle, A., Scheu, S., 2019. Protura are unique: first evidence of specialized feeding on ectomycorrhizal fungi in soil invertebrates. BMC Ecology 19(10). https://doi.org/10.1186/s12898-019-0227-y  

Fardiansah, R., Dupérré, N., Widyastuti, R., Potapov, A., Scheu, S., Harms, D., 2019. Description of four new species of armoured spiders (Araneae, Tetrablemmidae) from Sumatra, Indonesia. ZooKeys 820, 95–118. https://doi.org/10.3897/zookeys.820.29363  

2018

Potapov, A.M., Korotkevich, A.Y., Tiunov, A.V., 2018. Non-vascular plants as a food source for litter-dwelling Collembola: Field evidence. Pedobiologia 66, 11–17. https://doi.org/10.1016/j.pedobi.2017.12.005  (10)

Korotkevich, A.Y., Potapov, A.M.*, Tiunov, A.V., Kuznetsova, N.A., 2018. Collapse of trophic-niche structure in belowground communities under anthropogenic disturbance. Ecosphere 9, e02528. https://doi.org/10.1002/ecs2.2528  

Fardiansah, R., Dupérré, N., Widyastuti, R., Potapov, A., Scheu, S., Harms, D., 2018. Description of three new species of Aposphragisma Thoma, 2014 (Araneae: Oonopidae) from Sumatra, Indonesia. ZooKeys 797, 71–85. https://doi.org/10.3897/zookeys.797.29364  

2017

Potapov, A.M., Goncharov, A.A., Semenina, E.E., Korotkevich, A.Y., Tsurikov, S.M., Rozanova, O.L., Anichkin, A.E., Zuev, A.G., Samoylova, E.S., Semenyuk, I.I., Yevdokimov, I.V., Tiunov, A.V., 2017. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology 82, 88–97. https://doi.org/10.1016/j.ejsobi.2017.09.001  

2016

Potapov, A.M., Semenina, E.E., Korotkevich, A.Y., Kuznetsova, N.A., Tiunov, A.V., 2016. Connecting taxonomy and ecology: Trophic niches of collembolans as related to taxonomic identity and life forms. Soil Biology and Biochemistry 101, 20–31. https://doi.org/10.1016/j.soilbio.2016.07.002  

Potapov, A.M., Tiunov, A.V., 2016. Stable isotope composition of mycophagous collembolans versus mycotrophic plants: Do soil invertebrates feed on mycorrhizal fungi? Soil Biology and Biochemistry 93, 115–118. https://doi.org/10.1016/j.soilbio.2015.11.001  

Potapov, A.M., Goncharov, A.A., Tsurikov, S.M., Tully, T., Tiunov, A.V., 2016. Assimilation of plant-derived freshly fixed carbon by soil collembolans: Not only via roots? Pedobiologia 59, 189–193. https://doi.org/10.1016/j.pedobi.2016.07.002  

Goncharov, A.A., Tsurikov, S.M., Potapov, A.M., Tiunov, A.V., 2016. Short-term incorporation of freshly fixed plant carbon into the soil animal food web: field study in a spruce forest. Ecological Research. https://doi.org/10.1007/s11284-016-1402-7  

2014

Potapov, A.M., Semenyuk, I.I., Tiunov, A.V., 2014. Seasonal and age-related changes in the stable isotope composition (15N/14N and 13C/12C) of millipedes and collembolans in a temperate forest soil. Pedobiologia 57, 215–222. https://doi.org/10.1016/j.pedobi.2014.09.005  

2013

Potapov, A.M., Semenina, E.E., Kurakov, A.V., Tiunov, A.V., 2013. Large 13C/12C and small 15N/14N isotope fractionation in an experimental detrital foodweb (litter–fungi–collembolans). Ecological Research 28, 1069–1079. https://doi.org/10.1007/s11284-013-1088-z   

* Senior or corresponding authorship