Published Article
1. L. Beznea, I. Cîmpean, and M. Röckner, A natural extension of Markov processes and applications to singular SDEs, Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 56 no. 4 (2020), 2480-2506.
2. L. Beznea, O. Lupascu-Stamate, C. Vrabie, Stochastic solutions to evolution equations of non-local branching processes, Nonlinear Analysis200 (2020), https://doi.org/10.1016/j.na.2020.112021
3. L. Beznea, M.N. Pascu, and N.R. Pascu, Brosamler's formula revisited and extensions, Analysis and Mathematical Physics 9 (2019), 747-760.
4. L. Beznea, L. I. Ignat, and J. D. Rossi, From Gaussian estimates for nonlinear evolution equations to the long time behavior of branching processes, Revista Matematica Iberoamericana 35 (2019), 823-846.
5. L. Beznea, I. Cîmpean, and M. Röckner, A new approach to the existence of invariant measures for Markovian semigroups, Annales de l’Institut Henri Poincaré - Probabilités et Statistiques 55 (2019), 977-1000.
6. Q. Gomez, O. Ciobanu and I. R. Ionescu, Numerical modeling of wave propagation in a cracked solid, Mathematics and Mechanics of Solids 24 (2019), 2895-2910.
7. C. Cavaterra, D. Enachescu, G. Marinoschi, Sliding mode control of the Hodgkin-Huxley mathematical model, Evolution equations and control theory 8 (2019), 883-902.
8. I. R. Ionescu, O. Lupascu-Stamate, Boundary variation method for the generalized Cheeger problem, Applied Numerical Mathematics 140 (2019), 199-214.
9. L. Beznea, M. Deaconu, and O. Lupascu-Stamate, Numerical approach for stochastic differential equations of fragmentation; application to avalanches, Mathematics and Computers in Simulation 160 (2019), 111-125.
10. Q. Gomez, J. Li, and I. R. Ionescu, Damage and Wave Propagation in Brittle Materials in Dynamic Damage and Fragmentation, Wiley, (2018)
11. L. Beznea, I. Cimpean, Quasimartingales associated to Markov processes, Trans. Amer. Math. Soc. 370 (2018), 7761-7787.
12. L. Beznea, I. Cimpean, and M. Röckner, Irreducible recurrence, ergodicity, and extremality of invariant measures for resolvents, Stoch. Process. their Appl. 128 (2018), 1405-1437.
13. L. Beznea, I. Cimpean, Invariant, super and quasi-martingale functions of a Markov process, Stochastic Partial Differential Equations and Related Fields (Springer Proceedings in Mathematics & Statistics 229), Spinger (2018), 421-434, ISBN: 978-3-319-74928-0
14. L. Beznea, M.N. Pascu, and N.R. Pascu, Connections between the Dirichlet and the Neumann problem for continuous and integrable boundary data. In: Stochastic Analysis and Related Topics (Progress in Probability 72, Birkhauser), Springer 2017, pp. 85-97,
http://www.springer.com/us/book/9783319596709
15. R. Hauser, H. Matzinger, and I. Popescu, An upper bound on the convergence rate of a second functional in optimal sequence alignment, Bernoulli 24 (2018), 971-992.
16. M. N. Pascu and I. Popescu, Couplings of Brownian motions of deterministic distance in model spaces of constant curvature, Journal of Theoretical probability 31 (2018), 2005-2031.
17. I. Popescu, Free functional inequalities on the circle, Advances in Mathematics 330 (2018), 1101-1159.
18. P. Colli, G. Gilardi, G. Marinoschi, E. Rocca, Optimal control for a conserved phase field system with a possibly singular potential, Evolution equations and control theory 7 (2018), 95-116.
19. G. Marinoschi, A model of an epidemic mapping, In: Demographic and temporal heterogeneity in infectious disease epidemiology, Ricerche di Matematica, Springer 67 (2018), 271-284.
Organized Conferences
Section Stochastic Analysis and its Applications, The Ninth Congress of Romanian Mathematicians, Galati,
June 28 - July 3, 2019 https://sites.google.com/view/congmatro9/special-sessions
Analyse stochastique et themes connexes, Bucharest, May 6-9, 2019, 22 invited speakers from 9 states, https://sites.google.com/site/analysestochastique/
Potentiel et Probabilites, Bucharest, January 24,25, 2019, http://www.imar.ro/~imar/2018/Conferinte/Potentiel-Probabilites-2019.pdf
Atelier de travail en stochastique et EDP, Bucharest, September 14, 15, 2018, http://www.imar.ro/~imar/2018/Conferinte/Afis-EDP.pdf
Théorie du potentiel et EDP non-linéaires, November 22, 23, 2018, http://www.imar.ro/~imar/2018/PotNov2018.pdf
Section Analysis of finite and infinite dimensional processes,Joint International Meeting of the German Mathematical Society and the Romanian Mathematical Society, September 16 - 19, 2017, Constanta, Romania. http://imar.ro/~imar/2017/DFG/AnProc.ph, Co-organizer: Martin Grothaus (TU Kaserslautern)