PUBLICATIONS

Peer-reviewed articles

In Preparation

[45] Optical Properties of Triangular Gold Nanoframes.
M.M. Shahjamali, N. Zaraee, A. Li, N. Large, M. Bosman, S.S. Vankataraman, V.N. Manoharan, C. Xue, and G.C. Schatz

[44] Numerical modeling of gold nanorod ensembles: Photothermal properties, coating effects, and transient heating.
P. Lopez, K.M. Mayer, and N. Large

[43] Computational modeling of the electron energy-loss spectroscopy (EELS) of periodic silver nanoparticle arrays.
R. Kraja and N. Large

Submitted

[43] Plasmonic excitation concentrate reactants in non-catalyst regions of the nano-plasmonic array for enhanced solar photocatalysis.
G. Yan, M. Brinkman, N. Chiang, N. Large, W.-C. Shih, and Y.-Y. Chen

2023

[42] The Role of Plasmonic Antenna in Hot-Carrier-Driven Reactions on Bimetallic Nanostructures.
Z. Li, J. Rigor, N. Large, and D. Kurouski: J. Phys. Chem. C 2023, 127, 22635–22645

[41] Photoconductive control of higher-order localized surface plasmon modes in Au-Si-Au nanodisk stacking.
V. Nooshnab and N. Large: J. Nanopart. Res. 2023, 25, 127

2022

[40] Photonic band structure calculation of 3D finite nanostructured supercrystals.
J.L. Montaño-Priede and Nicolas Large: Nanoscale Adv. 2022, 4, 4589-4596

[39] Raman energy density in the context of acoustoplasmonics.
J.L. Montaño-Priede, N. Umanzor, A. Mlayah, and N. Large: Phys. Rev. B 2022, 106, 165425

[38] Plasmonic heating effects in tip-enhanced Raman spectroscopy (TERS).
J. Rigor, D. Kurouski, and N. Large: J. Phys. Chem. C. 2022, 126, 13986-13993

[37] Computational analysis of drug free silver triangular nanoprism theranostic probe plasmonic behavior for in-situ tumor imaging and photothermal therapy.
S. Mondal, J.L. Montaño-Priede, V.T. Nguyen, S. Park, J. Choi, V.H. Minh Doan, T.M. Thien Vo, T.H. Vo, N. Large, and J. Oh: J. Adv. Res. 2022, 41, 23-38

[36] Enhanced dual plasmonic photocatalysis through plasmon coupling in eccentric noble metal-nonstoichiometric copper chalcogenide hetero-nanostructures
M. Ivanchenko, V. Nooshnab, A.F. Myers, A.J. Evangelista, N. Large, and H. Jing: Nano Res. 2022, 15, 1579-1586

2021

[35] Underlying mechanisms of hot carrier-driven reactivity on bimetallic nanostructures.
Z. Li, J. Rigor, N. Large, P.Z. El-Khoury, and D Kurouski: J. Phys. Chem. C 2021, 125, 2492

[34] Magneto-Plasmonic Biocompatible Nanorice.
C.M. García-Rosas, L.A. Medina, P. Lopez, N. Large, and A. Reyes-Coronado: J. Nanopart. Res. 2021, 23, 144

2020

[33] Plasmonic-Induced Luminescence of MoSe2 Monolayers in a Scanning Tunneling Microscope.
R. Péchou, S. Jia, J. Rigor, O. Guillermet, G. Seine, J. Lou, N. Large, A. Mlayah, and R Coratger: ACS Photonics 2020, 7, 3061

[32] Wavelength and Polarization Dependence of Second Harmonic Responses from Gold Nanocrescent Arrays.
H. Maekawa, E. Drobnyh, C.A. Lancaster, N. Large, G.C. Schatz, J.S. Shumaker-Parry, M. Sukharev, and N.-H. Ge: J. Phys. Chem. C 2020, 124, 20424

[31] Multiphysics Modeling of Plasmonic Photothermal Heating Effects in Gold Nanoparticles and Nanoparticle Clusters.
S. Manrique-Bedoya, M. Abdul-Moqueet, P. Lopez, T. Gray, M. Disiena, A. Locker, S. Kweem, L. Tang, R.L. Hood, Y. Feng, N. Large, K.M. Mayer: J. Phys. Chem. C 2020, 124, 17172

[30] Direct experimental evidence of hot-carrier-driven chemical processes in tip-enhanced Raman spectroscopy (TERS).
R. Wang, J. Li, J. Rigor, N. Large, P.Z. El-Khoury, A. Yu. Rogachev, D. Kurouski: J. Phys. Chem. C 2020, 124, 2238

2019

[29] Controlled Overgrowth of Five-Fold Concave Nanoparticles Into Plasmonic Nanostars and Their Single-Particle Scattering Properties.
J.J. Velázquez-Salazar, L. Bazán-Díaz, Q. Zhang, R. Mendoza-Cruz, J.L. Montaño-Priede, G. Guisbiers, N. Large, S. Link, and M. José-Yacamán: ACS Nano 2019, 13, 10113

[28] Detection of the Conformational Changes of Discoma Red Fluorescent Proteins Adhered on Silver Nanoparticles-Based Nanocomposities via Surface-Enahnced Raman Scattering.
A. Scarangella, M. Soumbo, A. Mlayah, C. Bonafos, M.-C. Monje, C. Marcelot, N. Large, T. Dammak, and K. Makasheva: Nanotechnology 2019, 30, 165101

2018

[27] Surface enhanced resonant Raman scattering in hybrid MoSe2@Au nanostructures.
I. Abid, W. Chen, J. Yuan, S. Najmaei, E.C. Peñafiel, R. Péchou, N. Large, J. Lou, and A. Mlayah: Opt. Express 2018, 26, 29411.

2017

[26] Unraveling near- and far-field relationship of 2D SERS substrates using wavelength-scan surface-enhanced Raman spectroscopy (WS-SERES).
D. Kurouski, N. Large, N. Chiang, A.-I. Henry, T. Seideman, G.C. Schatz, and R.P. Van Duyne: J. Phys. Chem C 2017, 121, 14737

[25] On the efficient excitation of higher order modes in the plasmonic response of individual concave gold nanocubes.
A. Maiti, A. Maity, B. Satpati, N. Large, and T.K. Chini: J. Phys. Chem. C 2017, 121, 731

2016

[24] Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods.
S. Yazdi, J.R. Daniel, N. Large, G.C. Schatz, D. Boudreau, and E. Ringe: Nano Lett. 2016, 16, 6939

[23] High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition.
S.S. Masango, R.A. Hackler, N. Large, A.-I. Henry, G.C. Schatz, P.C. Stair, and R.P. Van Duyne: Nano Lett. 2016, 19, 4251

[22] Ag-Ag2S Hybrid Nanoprisms: Structural versus Plasmonic Evolution.
M.M. Shahjamali, Y. Zhou, N. Zaraee, C. Xue, J. Wu, N. Large, M. McGuirk, F. Boey, V. Dravid, G.C. Schatz, C.A. Mirkin: ACS Nano 2016, 10, 5362

[21] Unraveling Near-Field and Far-Field Relationships for 3D SERS Substrates: A Combined Experimental and Theoretical Analysis.
D. Kurouski*, N. Large*, N. Chiang, N. Greeneltch, K.T. Carron, T. Seideman, G.C. Schatz, and R.P. Van Duyne: Analyst 2016, 141, 1769; *Equal contributions

[20] Influence of Surfactant Bilayers on the Refractive Index Sensitivity and Catalytic Properties of Anisotropic Gold Nanoparticles.
E. Martinsson, M.M. Shahjamali, N. Large, N. Zaraee, Y. Zhou, G.C. Schatz, C.A. Mirkin, and D. Aili: Small 2016, 12, 330

2015

[19] High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps.
M. Zhang, N. Large, A.-L. Koh, Y. Cao, A. Manjavacas, P. Nordlander, R. Sinclair, and S.X. Wang: ACS Nano 2015, 9, 9331

[18] Electron Energy-Loss Spectroscopy Calculations in Finite-Difference Time-Domain Package.
Y. Cao, A. Manjavacas, N. Large, and P. Nordlander: ACS Photonics 2015, 2, 369

[17] Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire.
J.K. Day*, N. Large*, P. Nordlander, and N.J. Halas: Nano Lett. 2015, 15, 1324; *Equal contributions

2014

[16] Au Nanoparticles with Tipped Surface Structures as Substrates for Single-Particle SERS: Concave Nanocubes, Nanotrisoctahedra, and Nanostars.
Q. Zhang, N. Large, and H. Wang: ACS Appl. Mater. Interfaces 2014, 6, 17255

[15] Epitaxial Growth of Cu2O on Ag Allows for Fine Control over Particle Geometries and Optical Properties of Ag-Cu2O Core-Shell Nanoparticles.
H. Jing*, N. Large*, Q. Zhang, and H. Wang: J. Phys. Chem. C 2014, 118, 19948; *Equal contributions

[14] Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets.
H. Jing, Q. Zhang, N. Large, C. Yu, D.A. Blom, P. Nordlander, and H. Wang: Nano Lett. 2014, 14, 3674

[13] Porous Au Nanoparticles with Tunable Plasmon Resonances and Intense Field Enhancements for Single-Particle SERS.
Q. Zhang, N. Large, P. Nordlander, and H. Wang: J. Phys. Chem. Lett. 2014, 5, 370 (2014)

[12] Hot-Electron-Induced Dissociation of H2 on Gold Supported on SiO2.
S. Mukherjee, L. Zhou, A.M. Goodman, N. Large, C. Ayala-Orozco, Y. Zhang, P. Nordlander, N.J. Halas: J. Am. Chem. Soc. 2014, 136, 64

2013

[11] Orienting Nanoantennas in Three Dimensions to Control Light Scattering Across a Dielectric Interface.
N.S King, M.W. Knight, N. Large, A.M. Goodman, P. Nordlander, and N.J. Halas: Nano Lett. 2013, 13, 5997

[10] Three-Dimensional Plasmonic Nanoclusters.
A.S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M.W. Knight, P. Nordlander, H. Chen, N.J. Halas: Nano Lett. 2013, 13, 4399

[9] Local Electron Beam Excitation and Substrate Effect on the Plasmonic Response of Single Gold Nanostars.
P. Das, A. Kedia, P.S. Kumar, N. Large, and T.K. Chini: Nanotechnology 2013, 24, 405704

[8] Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers.
A.E. Schlather*, N. Large*, A.S. Urban, P. Nordlander, and N.J. Halas, Nano Lett. 2013, 13, 3281; *Equal Contributions

[7] Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au.
S. Mukherjee, F. Libisch, N. Large, O. Neumann, L.V. Brown, J. Cheng, B. Lassiter, E.A. Carter, P. Nordlander, and N.J. Halas, Nano Lett. 2013, 13, 240

2007-2011

[6] Plasmonic Properties of Gold Ring-Disk Nano-Resonators: Fine Shape Details Matter.
N. Large, J. Aizpurua, R. Marty, V. Kaixin Lin, S.L. Teo, S. Tripathy, and A. Mlayah: Opt. Express 2011, 19, 5587

[5] Gold Nanoring Trimers: A Versatile Structure for Infrared Sensing.
S. Lang Teo, V. Kaixin Lin, R. Marty, N. Large, E. Alarcon Llado, A. Arbouet, C. Girard, J. Aizpurua, S. Tripathy, and A. Mlayah: Opt. Express 2010, 18, 22271

[4] Raman-Brillouin Electronic Density in Short Period Superlattices.
N. Large, J.R. Huntzinger, J. Aizpurua, B. Jusserand, and A. Mlayah: Phys. Rev. B 2010, 82, 075310

[3] Photoconductively Loaded Plasmonics Nanoantenna as Building Block for Ultra Compact Optical Switches.
N. Large, M. Abb, J. Aizpurua, and O.L. Muskens: Nano Lett. 2010, 10, 1741

[2] Acousto-plasmonic hot spots in metallic nano-objects.
N. Large, L. Saviot, J. Margueritat, J. Gonzalo, C.N. Afonso, A. Arbouet, P. Langot, A. Mlayah, and J. Aizpurua: Nano Lett. 2009, 9, 3732

[1] Raman-Brillouin Light Scattering inLow-Dimensional Systems: Photoelastic Model Versus Quantum Model.
A. Mlayah, J.R. Huntzinger, and N. Large: Phys. Rev. B 2007, 75, 245303


Proceeding articles

[5] A new approach for the optical sensing of contaminants of emerging concern based upon core-shell nanoparticles.
C. Marquez Ibarra, G. Morales-Luna, N. Large, N. Ornelas-Soto, and K. M. Mayer: Proc. SPIE 12196, Active Photonic Platforms 2022, 121960B, 2022

[4] Synthesis, characterization, and computational modeling of polyelectrolyte-coated plasmonic gold nanorods for photothermal heating studies.
P. Lopez, K. Mayer, and N. Large: Proc. SPIE 11082, Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XVII, 110822W-1-5, Sep. 2019

[3] Fabrication and characterization of thermo-responsive gold nanorod assemblies.
G. Bustamante, K. Carrizales, F. DeLuna, N. Large, and J.Y. Ye: Proc. SPIE 10507, Colloidal Nanoparticles for Biomedical Applications XIII, 105070B1-10, Feb. 2018

[2] Plasmonic nanoantennas as building blocks for ultracompact photonic devices.
J. Aizpurua, N. Large, M. Abb, and O.L. Muskens: Photonics Society Summer Topical Meeting Series, 2010 IEEE, July 2010

[1] Acousto-Plasmonic Coupling in Engineered in Metal Nanocomposites.
N. Large, A. Mlayah, L. Saviot, J. Margueritat, J. Gonzalo, C.N. Afonso, and J. Aizpurua: Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on, pp.1-2, May 2010


Conferences – Invited talks

[30] Photonics and Electromagnetics Research Symposium (PIERS), Prague, Czech Republic (July 2023)
    → Acousto-Plasmonic Coupling: The Raman Energy Density (RED)
N. Large, J.L. Montaño-Priede, A. Mlayah

[29] International Conference on Metamarterials, Photonic Crystals and Plasmonics (META), Paris, France (July 2023)
    → Acousto-Plasmonic Coupling: The Raman Energy Density (RED)
N. Large, J.L. Montaño-Priede, A. Mlayah

     → Photonic band structure calculation of 3D finite nanostructured supercrystals
N. Large, J.L. Montaño-Priede

[28] 10th International Conference on Surface Plasmons Photonics (SPP10), Houston, TX, US (May 2023)
    → Acousto-Plasmonic Coupling: The Raman Energy Density (RED)
N. Large, J.L. Montaño-Priede, A. Mlayah

[27] PQE conference, Snowbird, UT, US (Jan. 2023)
    → Photonic band structure calculation of 3D finite nanostructured supercrystals

[26] 16th International Conference on Near-Field Optics, Nanophotonics, and Related Techniques (NFO-16), Victoria, Canada (Aug. 2022)
    → Acousto-Plasmonic Coupling: The Raman Energy Density (RED)
N. Large, J.L. Montaño-Priede, A. Mlayah

[25] ACS Fall Meeting, Chicago, IL, US (Aug. 2022)
     → Raman Energy Density (RED) in the Context of Acousto-Plasmonics
N. Large, J.L. Montaño-Priede, A. Mlayah

[24] NanoX/FeRMI days, Toulouse, France (Mar. 2022)
     → Raman Energy Density (RED) in the Context of Acousto-Plasmonics
N. Large, J.L. Montaño-Priede, A. Mlayah

[23] PQE conference, Snowbird, UT, US (Jan. 2022)
        → Acousto-plasmonic interaction in metallic nanoparticles.

[22] 94th ACS Colloid & Surface Science Symposium, Houston, TX, US (June 2020) - CANCELLED
     → Acousto-plasmonic coupling: The Raman energy density
N. Large, J.L. Montaño-Priede, and A. Mlayah

[21] 6th International Conference on Frontiers of nano-Photonics (FOP6), Kunming, China (Mar. 2020) - CANCELLED
      → Acousto-plasmonic coupling: The Raman energy density.
N.  Large, J.L. Montaño-Priede, and A. Mlayah

[20] MRS Spring Meeting, Phoenix, AZ, US (Apr. 2019)
        → Study of the Plasmon-Exciton Coupling in Hybrid Nanostructured Superlattices.
            N. Large, and J.L. Montaño-Priede

        → Acousto-Plasmonic Coupling – The Raman Energy Density (RED).
            N. Large, J.L. Montaño-Priede, L. Saviot, and A. Mlayah

[19] PQE conference, Snowbird, UT, US (Jan. 2019)
        → Acousto-plasmonic interaction in metallic nanoparticles.

[18] ACS Fall Meeting, Boston, MA, US (Aug. 2018)
        → Acousto-plasmonic interaction: from Fermi golden rules to Raman energy density.

[17] PQE conference, Snowbird, UT, US (Jan. 2018)
        → Numerical modeling of electron energy-loss spectroscopy in complex plasmonic nanostructures.

[16] SPIE Optics & Photonics, San Diego, CA, US (Aug. 2017)
        → Novel numerical method for electron energy-loss spectroscopy calculation: EELS-FDTD.

[15] MRS Spring Meeting, Phoenix, AZ, US (Apr. 2017)
        → Novel numerical method for electron energy-loss spectroscopy calculation: EELS-FDTD.
            N. Large, A. Manjavacas, E. Ringe, G.C. Schatz, and P. Nordlander

[14] ACS Spring Meeting, San Francisco, CA, US (Apr. 2017)
        → Novel numerical method for electron energy-loss spectroscopy calculation: EELS-FDTD.
            N. Large, A. Manjavacas, E. Ringe, G.C. Schatz, and P. Nordlander

[13] 13th International Conference on Nanotek and Expo, Phoenix, AZ (Dec. 2016)
        → Computational Nanoplasmonics: Success and Challenges.

[12] San Antonio Nanotechnology Forum (SANTF), San Antonio, TX (Oct. 2016)
        → Computational plasmonic: from fundamental physics to applications.

[11] Nanotechnology week 2016, Hermosillo, Mexico (Oct. 2016)
        → Plasmonic properties of metallic and hybrid nanostructures: from fundamental physics to applications.

[10] 14th International Conference on Near-Field Optics and Nanophotonics (NFO-14), Hamamatsu, Japan (Sep. 2016)
        → Electron energy-loss spectroscopy calculation in finite-difference time-domain: EELS-FDTD.
            N. Large, A. Manjavacas, E. Ringe, G.C. Schatz, P. Nordlander

[9] Trends In Nanotechnology International Conference (TNT2015), Toulouse, France (Sep. 2015)
        → Electron energy-loss spectroscopy calculation in finite-difference time-domain package: EELS-FDTD.
            N. Large, Y. Cao, A. Manjavacas, M. Zhang, J. Ku, S.X. Wang, C.A. Mirkin, G.C. Schatz, P. Nordlander

[8] APS March Meeting, San Antonio, TX, US (Mar. 2015)
        → Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire.
            N. Large, J.K. Day, P. Nordlander, and N.J. Halas

        → Tunable Plasmonic Nanoparticles with Catalytically Active High-Index Facets.
            N. Large, H. Jing, Q. Zhang, P. Nordlander, and H. Wang

        → Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package: EELS-FDTD.
            N. Large, Y. Cao, A. Manjavacas, and P. Nordlander

        → Influence of Surfactant Bilayers and Substrate Immobilization on the Refractive Index Sensitivity of Anisotropic Gold Nanoparticles.
            N. Large, M.M. Shahjamali, E. Martinsson, N. Zaraee, G.C .Schatz, D. Aili, and C.A. Mirkin

[7] APS March Meeting, Denver, CO, US (Mar. 2014)
        → Near-field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers.
            N. Large, A.E. Schlather, A.S. Urban, P. Nordlander, and N.J. Halas

        → Three-Dimensional Plasmonic Nanoclusters.
            N. Large, A.S. Urban, X. Shen, Y. Wang, H. Wang, M.W. Knight, P. Nordlander, H. Chen, and N.J. Halas

[6] 4th European Topical Meeting on Nanophotonics and Metamaterials (Nanometa 2013), Seefeld, Austria (Jan. 2013)
        Plasmonic Graphene-Antenna Sandwich Photodetector
            Z. Fang, Y. Wang, N. Large, P. Nordlander, and N.J. Halas

        Plexcitonic Induced Transparency (EIT-like) in Metallic Dimers
            N. Large, A.E. Schlather, N.J. Halas, and P. Nordlander

[5] 5th International Conference on Surface Plasmons Photonics (SPP5), Busan, Korea (May 2011)
        Acousto-Plasmonic Dynamics in Raman Scattering
            N. Large, L. Saviot, J. Aizpurua, and A. Mlayah

[4] 2a Conferencia Española de Nanofotónica (CEN 2010), Segovia, Spain (Jun. 2010)
        Photoconductively Loaded Plasmonic Nanoantenna as Building Block for Ultra Compact Switches
            N. Large, M. Abb, J. Aizpurua, and O.L. Muskens

[3] 13th International Conference on Phonon Scattering in Condensed Matter (Phonons 2010), Taipei, Taiwan (Apr. 2010)
        Acousto-Plasmonic Dynamics in Metallic Nano-Objects
            N. Large, A. Mlayah, L. Saviot, J. Margueritat, J. Gonzalo, C.N. Afonso, and J. Aizpurua

        Highly Selective Photoelastic Coupling Through Confined Electron Eigenstates in Superlattices
            N. Large, B. Jusserand, J.R. Huntzinger, J. Aizpurua, and A. Mlayah

[2] 2nd European Topical Meeting on Nanophotonics and Metamaterials (Nanometa 2009), Seefeld, Austria (Jan. 2009)
        Interaction of Surface Plasmons and Acoustic Vibrations in Metallic Nano-Objects
            N. Large, J. Aizpurua, A. Mlayah, and L. Saviot

[1] APS March Meeting 2008, New Orleans, LA, US (Mar. 2008)
        Raman-Brillouin Electronic Density in GaAs/AlAs Superlattices
            N. Large, A. Mlayah, J. Aizpurua, J.R. Huntzinger, and B. Jusserand


Invited seminars

[21] Plasmonic properties of metallic and hybrid nanostructures: from fundamental physics to applications, University of Technology of Troyes (UTT), Troyes, France (May 2022)

[20] Plasmonic properties of metallic and hybrid nanostructures: from fundamental physics to applications, CEMES-CNRS, Toulouse, France (April 2022)

[19] Hybrid plasmonics and elementary excitations, College of Chemistry, Jilin University, Jilin, China (Apr. 2020)

[18] Hybrid plasmonics and elementary excitations, School of Physics, Peking University, Beijing, China (Mar. 2020)

[17] Quantum Research at UTSA, Texas Quantum Institute, College Station, TX (Oct. 2019)

[16] Computational Plasmonics, Laboratory for Analysis and Architecture of Systems, LAAS-CNRS, Toulouse, France (Nov. 2019)

[15] Computational Plasmonics, Center for Materials Elaboration and Structural Studies, CEMES-CNRS, Toulouse, France (May 2019)

[14] Plasmonic properties of metallic and hybrid nanostructures, University of Cambridge, Cambridge, UK (Oct. 2018) 

[13] Plasmonic properties of metallic and hybrid nanostructures, Institut Lumière Matière, Lyon, France (Oct. 2018)

[12] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, Stanford University, Stanford, CA (Jul. 2017)

[11] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, University of Texas, Austin, TX (Dec. 2016)

[10] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, Institute of Physics, UNAM, Mexico City, Mexico (Oct. 2016)

[9] Computational plasmonics: from fundamental physics to applications, San Antonio Nanotechnology Forum, San Antonio, TX (Oct. 2016)

[8] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, Faculty of Sciences, UNAM, Mexico City, Mexico (Oct. 2016)

[7] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, Southwest Research Institute - SwRI, San Antonio, TX (Sep. 2016)

[6] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, Center For Materials Physics - CSIC, San Sebastián, Spain (May 2016)

[5] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, Centre d'Elaboration des Materiaux et d'Etudes Structurales - CNRS, Toulouse, France (May 2016)

[4] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Fundamental Physics to Applications, University of Texas, San Antonio, TX (Feb. 2016)

[3] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Chemistry to Optical Engineering, University of Delaware, Newark, DE (Jan. 2015)

[2] Plasmonic Properties of Metallic and Hybrid Nanostructures: from Chemistry to Optical Engineering, Northwestern University, Evanston, IL (Feb. 2014)

[1] Acousto-plasmonic dynamics in metallic nano-objects, Institute of Materials Research and Engineering (IMRE), National University of Singapore, Singapore (Nov. 2009)


Popular covers

[16] LinkedIn: My opinion on virtual conferences (May 14, 2020)

[15] UTSA OIT News: UTSA’s main high performance computing cluster cited in scientific journal (Nov. 28, 2018)

[14] Eurekalert: Core technology springs from nanoscale rods (Oct. 10, 2016)

[13] ACS Video Highlight: High-density 2D homo- and hetero- plasmonic dimers with universal sub-10-nm gaps (Sept. 25, 2015)

[12] Photonics: Team bridges nanocatalyst size gap for real-time data (June 9, 2014)

[11] R&D: Opening a wide window on the nano-world os surface catalysis (June 6, 2014)

[10] Nanotechweb.org: Etched nanoparticles both catlyze and track reactions (May 28, 2014)

[9] APS March meeting image gallery: Nanoclusters Building Blocks (Mar. 2014)

[8] ElectroOptics.com: Rice University team fabricates stable 3D plasmonic nanoclusters (Nov. 4, 2013)

[7] Andor: Rice team fabricates stable three-dimensional plasmonic nanoclusters (Oct. 30, 2013)

[6] Nanowerk.com: 3D plasmonic nanoclusters open up access to a new dimension of optically active materials (Sep. 4, 2013)

[5] Phys.org: Hot electrons do the impossible in catalytic chemistry (Dec. 17, 2012)

[4] Nanotechweb.org: Hybrid nanoantenna advances optical devices (May 19, 2011)

[3] DIPC Highlights: Nanoantennas for ultrafast optical switches (May, 2010)

[2] Nanotechweb.org: Nanoantennas for ultrafast optical switches (May 7, 2010)

[1] DIPC Activity Report 08/09: Acousto-plasmonic hot sports in metallic nano-objects (Apr. 2010)


Dr. Large's Theses

[3] Habilitation (HDR), Université Paul Sabatier de Toulouse, France, June 22, 2023, Computational Methods and Theoretical Models for the Study of Plasmonic and Hybrid Nanostructures.

[2] Ph.D. thesis, Université Paul Sabatier de Toulouse, France and Universidad del País Vasco, San Sebastián, Spain, October 21, 2011, Resonant Raman-Brillouin Scattering of Semiconductor and Metallic Nanostructures - From Nano-Acoustics to Acousto-Plasmonics.

[1] M.S. thesis, Université Paul Sabatier de Toulouse, France and Universidad del País Vasco, San Sebastián, Spain, July 2, 2007, Simulations of inelastic light scattering properties of semiconductor thin films and superlattice.