Publications

34. Palladium-catalyzed direct α‑arylation of indane-1,3-dione to 2‑substituted indene-1,3-diones, N. Tamizharasan, G. Hallur, and P. Suresh, J. Org. Chem., 2021, 86, 12318−12325. DOI: 10.1021/acs.joc.1c01149 (link)                                              

33. A selective and sensitive electrochemical determination of catechol based on reduced graphene oxide decorated -cyclodextrin nanosheet modified glassy carbon electrode, S. Nikhil, A. Karthika, P. Suresh, A. Suganthi, and M. Rajarajan, J. Adv. Powd. Tech., 2021, 32, 2148-2159. DOI: 10.1016/j.apt.2021.04.027 (link)

32. Graphene oxide-derived carbonaceous sensor: turn-off fluorescence sensor for nanomolar detection of ruthenium ions in aqueous medium,  J. Belinda Asha,  M. Karthik, and P. Suresh,  Mater. Adv., 2021, 2, 3107-3118, DOI: 10.1039/D1MA00175B (link)

31. Synthesis of β-amino ketones using graphene oxide: A benign carbonaceous acid catalyst for Mannich reaction,  N. Saravana Ganesan, and P. Suresh,  Res. Chem. Intermed., 2021,  47, 1197–1210, DOI: 10.1007/s11164-020-04324-3   (link)

30. Covalently modified graphene oxide as highly fluorescent and sustainable carbonaceous chemosensor for selective detection of zirconium ion in complete aqueous medium, J. Belinda Asha, and P. Suresh,  ACS Sustain. Chem. Eng., 2020,  8, 38, 14301–14311 , DOI: 10.1021/acssuschemeng.0c03282  (link)

29. Framework copper-catalyzed oxidative synthesis of quinazolinones: A benign approach using Cu3(BTC)2 MOF as an efficient and reusable catalyst,  G. Latha, N. Devarajan, and P. Suresh, ChemistrySelect, 2020, 5, 10041-10047, DOI: 10.1002/slct.202002661 (link)

28. Green‐synthesized nickel nanoparticles on reduced graphene oxide as an active and selective catalyst for Suzuki and Glaser‐Hay coupling reactions,  M. Karthik,  N. Devarajan, K. Pavithara, N. Saravana Ganesan, and P. Suresh , Appl. Organomet. Chem., 2020, 34, e5778. DOI: 10.1002/aoc.5778 (link

27. Nitrogen‐doped graphene oxide as a sustainable carbonaceous catalyst for greener synthesis: Benign and solvent‐free synthesis of pyranopyrazoles, N. Saravana Ganesan, and P. Suresh, ChemistrySelect, 2020, 5, 4988-4993. DOI: 10.1002/slct.202000748 (link)

26. Discovery and optimization of novel phenyldiazepine and pyridodiazepine based Aurora kinase inhibitors, N. Tamizharasan, C. Gajendran, , S. P. Sulochana, D. Sivanandhan, R. Mullangi, L. Mathivathanan, G. Hallur, and P. Suresh, Bioorganic Chemistry, 2020, 99, 103800. DOI: 10.1016/j.bioorg.2020.103800  (link)

25. Iron-MOF catalyzed domino cyclization and aromatization strategy for the synthesis of 2,4-diarylquinolines, N. Devarajan, and P. Suresh, Asian J. org. Chem., 2020, 9, 437-444. DOI: 10.1002/ajoc.201900708,  (Special issue : Earth-Abundant Metals in Catalysis) (Link)

24. Nickel-catalyzed oxidative hydroxylation of arylboronic acid: Ni(HBTC)BPY MOF as an efficient and ligand-free catalyst to access phenolic motifs, G. Latha, N. Devarajan, M. Karthik, and P. Suresh, Catal. Commun., 2020, 136, 105911. DOI: 10.1016/j.catcom.2019.105911 (link)

web only. Editor: Cheryl Shanks, David Allen  JEM: Esther

23. Graphene oxide as a carbocatalyst for sustainable ipso-hydroxylation of arylboronic acids: A simple and straightforward strategy to access phenols, M. Karthik, and P. Suresh, ACS Sustain. Chem. Eng., 2019, 79, 9028-9034. DOI: 10.1021/acssuschemeng.9b01361 (link)

22. MIL-101-SO3H Metal-organic framework as a Brønsted acid catalyst in Hantzsch reaction: An efficient and sustainable methodology for one-pot synthesis of 1,4-dihydropyridine, N. Devarajan, and P. Suresh, New. J. Chem., 2019, 43, 6806-6814. DOI:10.1039/C9NJ00990F (link

21. Brønsted acidic reduced graphene oxide as a sustainable carbocatalyst: A selective method for the synthesis of C-2 substituted benzimidazole, M. Karthik, and P.  Suresh, New. J. Chem., 2018, 42, 17931-17938. DOI: 10.1039/C8NJ03257B (link)

20. Copper-catalyzed oxidative coupling of arylboronic acids with aryl carboxylic acids:  Cu3(BTC)2  MOF as a  sustainable catalyst to access aryl ester,  N. Devarajan, and P. Suresh, Org. Chem. Front., 2018, 5, 2322-2331. DOI: 10.1039/C8QO00519B (link)

19. Effectual binding of gallic acid with p-sulfonatocalix[4]arene: An experimental and theoretical interpretation, C. Saravanana, R. K. Chitumalla, B. C. M. A. Ashwin, M. Senthilkumaran, P. Suresh, J. Jang, and P.Muthu Mareeswaran,  J. Lumin., 2018, 196, 392–398.  DOI : 10.1016/j.jlumin.2017.12.063  (Link)

18. Copper catalyzed oxidative homocoupling of terminal alkynes to 1,3-diynes: A Cu3(BTC)2 MOF as an efficient and ligand free catalyst for Glaser–Hay coupling, N. Devarajan, M. Karthik, and P. Suresh, Org. Biomol. Chem., 2017, 15, 9191–9199. DOI: 10.1039/c7ob02196h (link)

17. Greener synthesis of reduced graphene oxide-nickel nanocomposite: Rapid and sustainable catalyst for the reduction of nitroaromatics, M. Karthik, and P. Suresh, ChemistrySelect, 2017, 2, 6916–6928. DOI: 10.1002/slct.201701314 (link

16. Spectral and electrochemical investigation of p-sulfonatocalix[4]arene-stabilized vitamin E aggregation, B. C. M. Arputham Ashwin, C. Saravanan, M. Senthilkumaran, R. Sumathi, P. Suresh, and P. Muthu Mareeswaran, Supramol. Chem., 2017, 30, 32-14. DOI: 10.1080/10610278.2017.1351612 (link)

15. Spectral and electrochemical investigation of 1,8-diaminonaphthalene upon encapsulation of p-sulfonatocalix[4]arene,  C. Saravanan,  M. Senthilkumaran, B. C. M. A. Ashwin, P. Suresh, and P. Muthu Mareeswaran, J. Incl. Phenom. Macro., 2017, 88, 239-246.  DOI 10.1007/s10847-017-0729-1. (link)

14. Electrochemical 4-chlorophenol sensing properties of plasma-treated multilayer graphene modified photolithography patterned platinum electrode, P. Karthick Kannan, R. V. Gelamo , H. Morgan, P. Suresh, and C. S. Rout, RSC Adv., 2016, 6, 105920–105929. DOI: 10.1039/C6RA24136K (link)

13. Framework copper catalyzed C-N cross coupling of arylboronic acids with imidazole: Convenient and ligand free synthesis of N-arylimidazoles, N. Devarajan, and P. Suresh, ChemCatChem, 2016, 8, 2953–2960. DOI: 10.1002/cctc.201600480 (link)

12. Fabrication of highly efficient visible light driven Ag/CeO2photocatalyst for degradation of organic pollutants, K. Saravanakumar, M. Mymoon Ramjan, P. Suresh, and V. Muthuraj, J. Alloys Compd., 2016, 664,  149-160. DOI:  10.1016/j.jallcom.2015.12.245 (link)

11. Palladium nanoparticles embedded on thioureamodified chitosan: A green and sustainable heterogeneous catalyst for the Suzuki reaction in water, A. Affrose, P. Suresh, I. A. Azath, and K. Pitchumani, RSC Adv., 2015, 5, 27533-27539. DOI: 10.1039/C4RA14411B (link)

10. Aerobic homocoupling of arylboronic acids catalysed by copper terephthalate metal organic frameworks, P. Puthiaraj, P. Suresh, and K. Pitchumani, Green Chem., 2014, 16, 2895-2875. DOI: 10.1039/C4GC00056K (link

9. Per-6-amino-β-cyclodextrin/CuI catalysed cyanation of aryl halides with K4[Fe(CN)6],  I. A. Azath, P. Suresh, and K. Pitchumani, New. J. Chem., 2012, 36, 2334-2339. DOI: 10.1039/C2NJ40556C (link)

8. Pyridinium ylide-assisted KY zeolite catalyzed tandem synthesis of polysubstituted cyclopropanes, V. Rama, K. Kanagaraj, T. Subramanian, P. Suresh, and K. Pitchumani, Catal. Commun., 2012, 26, 39-43. DOI: 10.1016/j.catcom.2012.04.020 (link)

7. Per-6-Ammonium-beta-Cyclodextrin/p-Nitrophenol complex as a colorimetric sensor for phosphate and pyrophosphate anions in water, I. A. Azath, P. Suresh, and  K. Pitchumani, Sens. Actuators B: Chem., 2011, 155, 909-914. DOI: 10.1016/j.snb.2011.01.041 (link)

6. Per-6-amino-beta-cyclodextrin as a reusable promoter and chiral host for enantioselective Henry reaction, K. Kanagaraj, P. Suresh, and K. Pitchumani, Org. Lett., 2010, 12, 4070-4073. DOI: 10.1021/ol101658n (link)

5. Naked-eye detection of Fe3+ and Ru3+ in water: Colorimetric and ratiometric sensor based on per-6-amino-beta-cyclodextrin/p-nitrophenol, P. Suresh, I. A. Azath, and K. Pitchumani, Sens. Actuators B: Chem., 2010, 146, 273-277. DOI: 10.1016/j.snb.2010.02.047 (link)

4. Novel photohydration of trans-stilbenes and trans-anethole inside cyclodextrin nanocavity in aqueous medium, P. Suresh, and K. Pitchumani, J. Photoch. Photobio. A 2009, 206, 40-45. DOI: 10.1016/j.jphotochem.2009.05.011 (link)

3. Per-6-amino-beta-cyclodextrin as an efficient supramolecular ligand and host for Cu(I)-catalyzed N-arylation of imidazole with aryl bromides, P. Suresh, and K. Pitchumani, J. Org. Chem., 2008, 73, 9121-9124. DOI: 10.1021/jo801811w (link)

2. Per-6-amino-beta-cyclodextrin catalyzed asymmetric Michael addition of nitromethane and thiols to chalcones in water, P. Suresh, and K. Pitchumani, Tetrahedron Asymmetr., 2008, 19, 2037-2044. DOI: 10.1016/j.tetasy.2008.08.014 (link)

1. Regioselective monobromination of substituted phenols in the presence of beta-cyclodextrin, P. Suresh, S. Annalakshmi, and K. Pitchumani, Tetrahedron, 2007, 63, 4959-4967. DOI: 10.1016/j.tet.2007.03.137 7 (link)