If x^n+-k*y^n has algebraic factorization, then x^n+-(k*m^n)*y^n has similar algebraic factorization, just replace "y" to "m*y" in these formulas, e.g. x^2-9*y^2 = (x - 3*y) * (x + 3*y) since 9 = 3^2, and x^3+8*y^3 = (x + 2*y) * (x^2 - 2*y*x + 4*y^2) since 8 = 2^3, thus we only list the k not divisible by an n-th power > 1
Only list the algebraic factorizations that include the 1st power of x and/or y, e.g. x^6+y^6 = (x^2 + y^2) * (x^4 - y^2*x^2 + y^4) only includes the 2nd and 4th powers of x and y, so not listed here, and x^8+4*y^8 = (x^4 - 2*y^2*x^2 + 2*y^4) * (x^4 + 2*y^2*x^2 + 2*y^4) only includes the 2nd and 4th powers of x and y, so not listed here, since the factorization of x^6+y^6 is similar to the factorization of x^3+y^3, just replace "x" and "y" to "x^2" and "y^2" respectively, and the factorization of x^8+4*y^8 is similar to the factorization of x^4+4*y^4, just replace "x" and "y" to "x^2" and "y^2" respectively
x^2-y^2 = (x - y) * (x + y)
x^3+y^3 = (x + y) * (x^2 - y*x + y^2)
x^3-y^3 = (x - y) * (x^2 + y*x + y^2)
x^4-y^4 = (x - y) * (x + y) * (x^2 + y^2)
x^4+4*y^4 = (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2)
x^5+y^5 = (x + y) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4)
x^5-y^5 = (x - y) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4)
x^6-y^6 = (x - y) * (x + y) * (x^2 - y*x + y^2) * (x^2 + y*x + y^2)
x^6+27*y^6 = (x^2 + 3*y^2) * (x^2 - 3*y*x + 3*y^2) * (x^2 + 3*y*x + 3*y^2)
x^7+y^7 = (x + y) * (x^6 - y*x^5 + y^2*x^4 - y^3*x^3 + y^4*x^2 - y^5*x + y^6)
x^7-y^7 = (x - y) * (x^6 + y*x^5 + y^2*x^4 + y^3*x^3 + y^4*x^2 + y^5*x + y^6)
x^8-y^8 = (x - y) * (x + y) * (x^2 + y^2) * (x^4 + y^4)
x^8-16*y^8 = (x^2 - 2*y^2) * (x^2 + 2*y^2) * (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2)
x^9+y^9 = (x + y) * (x^2 - y*x + y^2) * (x^6 - y^3*x^3 + y^6)
x^9-y^9 = (x - y) * (x^2 + y*x + y^2) * (x^6 + y^3*x^3 + y^6)
x^10-y^10 = (x - y) * (x + y) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4)
x^10-3125*y^10 = (x^2 - 5*y^2) * (x^4 - 5*y*x^3 + 15*y^2*x^2 - 25*y^3*x + 25*y^4) * (x^4 + 5*y*x^3 + 15*y^2*x^2 + 25*y^3*x + 25*y^4)
x^11+y^11 = (x + y) * (x^10 - y*x^9 + y^2*x^8 - y^3*x^7 + y^4*x^6 - y^5*x^5 + y^6*x^4 - y^7*x^3 + y^8*x^2 - y^9*x + y^10)
x^11-y^11 = (x - y) * (x^10 + y*x^9 + y^2*x^8 + y^3*x^7 + y^4*x^6 + y^5*x^5 + y^6*x^4 + y^7*x^3 + y^8*x^2 + y^9*x + y^10)
x^12-y^12 = (x - y) * (x + y) * (x^2 + y^2) * (x^2 - y*x + y^2) * (x^2 + y*x + y^2) * (x^4 - y^2*x^2 + y^4)
x^12+64*y^12 = (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^4 - 2*y*x^3 + 2*y^2*x^2 - 4*y^3*x + 4*y^4) * (x^4 + 2*y*x^3 + 2*y^2*x^2 + 4*y^3*x + 4*y^4)
x^12-729*y^12 = (x^2 - 3*y^2) * (x^2 + 3*y^2) * (x^2 - 3*y*x + 3*y^2) * (x^2 + 3*y*x + 3*y^2) * (x^4 + 3*y^2*x^2 + 9*y^4)
x^12+46656*y^12 = (x^4 + 36*y^4) * (x^4 - 6*y*x^3 + 18*y^2*x^2 - 36*y^3*x + 36*y^4) * (x^4 + 6*y*x^3 + 18*y^2*x^2 + 36*y^3*x + 36*y^4)
x^13+y^13 = (x + y) * (x^12 - y*x^11 + y^2*x^10 - y^3*x^9 + y^4*x^8 - y^5*x^7 + y^6*x^6 - y^7*x^5 + y^8*x^4 - y^9*x^3 + y^10*x^2 - y^11*x + y^12)
x^13-y^13 = (x - y) * (x^12 + y*x^11 + y^2*x^10 + y^3*x^9 + y^4*x^8 + y^5*x^7 + y^6*x^6 + y^7*x^5 + y^8*x^4 + y^9*x^3 + y^10*x^2 + y^11*x + y^12)
x^14-y^14 = (x - y) * (x + y) * (x^6 - y*x^5 + y^2*x^4 - y^3*x^3 + y^4*x^2 - y^5*x + y^6) * (x^6 + y*x^5 + y^2*x^4 + y^3*x^3 + y^4*x^2 + y^5*x + y^6)
x^14+823543*y^14 = (x^2 + 7*y^2) * (x^6 - 7*y*x^5 + 21*y^2*x^4 - 49*y^3*x^3 + 147*y^4*x^2 - 343*y^5*x + 343*y^6) * (x^6 + 7*y*x^5 + 21*y^2*x^4 + 49*y^3*x^3 + 147*y^4*x^2 + 343*y^5*x + 343*y^6)
x^15+y^15 = (x + y) * (x^2 - y*x + y^2) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4) * (x^8 + y*x^7 - y^3*x^5 - y^4*x^4 - y^5*x^3 + y^7*x + y^8)
x^15-y^15 = (x - y) * (x^2 + y*x + y^2) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4) * (x^8 - y*x^7 + y^3*x^5 - y^4*x^4 + y^5*x^3 - y^7*x + y^8)
x^16-y^16 = (x - y) * (x + y) * (x^2 + y^2) * (x^4 + y^4) * (x^8+y^8)
x^16-256*y^16 = (x^2 - 2*y^2) * (x^2 + 2*y^2) * (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^8 + 16*y^8)
x^17+y^17 = (x + y) * (x^16 - y*x^15 + y^2*x^14 - y^3*x^13 + y^4*x^12 - y^5*x^11 + y^6*x^10 - y^7*x^9 + y^8*x^8 - y^9*x^7 + y^10*x^6 - y^11*x^5 + y^12*x^4 - y^13*x^3 + y^14*x^2 - y^15*x + y^16)
x^17-y^17 = (x - y) * (x^16 + y*x^15 + y^2*x^14 + y^3*x^13 + y^4*x^12 + y^5*x^11 + y^6*x^10 + y^7*x^9 + y^8*x^8 + y^9*x^7 + y^10*x^6 + y^11*x^5 + y^12*x^4 + y^13*x^3 + y^14*x^2 + y^15*x + y^16)
x^18-y^18 = (x - y) * (x + y) * (x^2 - y*x + y^2) * (x^2 + y*x + y^2) * (x^6 - y^3*x^3 + y^6) * (x^6 + y^3*x^3 + y^6)
x^18+19683*y^18 = (x^2 + 3*y^2) * (x^2 - 3*y*x + 3*y^2) * (x^2 + 3*y*x + 3*y^2) * (x^6 - 9*y^3*x^3 + 27*y^6) * (x^6 + 9*y^3*x^3 + 27*y^6)
x^19+y^19 = (x + y) * (x^18 - y*x^17 + y^2*x^16 - y^3*x^15 + y^4*x^14 - y^5*x^13 + y^6*x^12 - y^7*x^11 + y^8*x^10 - y^9*x^9 + y^10*x^8 - y^11*x^7 + y^12*x^6 - y^13*x^5 + y^14*x^4 - y^15*x^3 + y^16*x^2 - y^17*x + y^18)
x^19-y^19 = (x - y) * (x^18 + y*x^17 + y^2*x^16 + y^3*x^15 + y^4*x^14 + y^5*x^13 + y^6*x^12 + y^7*x^11 + y^8*x^10 + y^9*x^9 + y^10*x^8 + y^11*x^7 + y^12*x^6 + y^13*x^5 + y^14*x^4 + y^15*x^3 + y^16*x^2 + y^17*x + y^18)
x^20-y^20 = (x - y) * (x + y) * (x^2 + y^2) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4) * (x^8 - y^2*x^6 + y^4*x^4 - y^6*x^2 + y^8)
x^20+1024*y^20 = (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^8 - 2*y*x^7 + 2*y^2*x^6 - 4*y^4*x^4 + 8*y^6*x^2 - 16*y^7*x + 16*y^8) * (x^8 + 2*y*x^7 + 2*y^2*x^6 - 4*y^4*x^4 + 8*y^6*x^2 + 16*y^7*x + 16*y^8)
x^20-9765625*y^20 = (x^2 - 5*y^2) * (x^2 + 5*y^2) * (x^4 - 5*y*x^3 + 15*y^2*x^2 - 25*y^3*x + 25*y^4) * (x^4 + 5*y*x^3 + 15*y^2*x^2 + 25*y^3*x + 25*y^4) * (x^8 - 5*y^2*x^6 + 25*y^4*x^4 - 125*y^6*x^2 + 625*y^8)
x^20+10000000000*y^20 = (x^4 + 100*y^4) * (x^8 - 10*y*x^7 + 50*y^2*x^6 - 200*y^3*x^5 + 700*y^4*x^4 - 2000*y^5*x^3 + 5000*y^6*x^2 - 10000*y^7*x + 10000*y^8) * (x^8 + 10*y*x^7 + 50*y^2*x^6 + 200*y^3*x^5 + 700*y^4*x^4 + 2000*y^5*x^3 + 5000*y^6*x^2 + 10000*y^7*x + 10000*y^8)
x^21+y^21 = (x + y) * (x^2 - y*x + y^2) * (x^6 - y*x^5 + y^2*x^4 - y^3*x^3 + y^4*x^2 - y^5*x + y^6) * (x^12 + y*x^11 - y^3*x^9 - y^4*x^8 + y^6*x^6 - y^8*x^4 - y^9*x^3 + y^11*x + y^12)
x^21-y^21 = (x - y) * (x^2 + y*x + y^2) * (x^6 + y*x^5 + y^2*x^4 + y^3*x^3 + y^4*x^2 + y^5*x + y^6) * (x^12 - y*x^11 + y^3*x^9 - y^4*x^8 + y^6*x^6 - y^8*x^4 + y^9*x^3 - y^11*x + y^12)
x^22-y^22 = (x - y) * (x + y) * (x^10 - y*x^9 + y^2*x^8 - y^3*x^7 + y^4*x^6 - y^5*x^5 + y^6*x^4 - y^7*x^3 + y^8*x^2 - y^9*x + y^10) * (x^10 + y*x^9 + y^2*x^8 + y^3*x^7 + y^4*x^6 + y^5*x^5 + y^6*x^4 + y^7*x^3 + y^8*x^2 + y^9*x + y^10)
x^22+285311670611*y^22 = (x^2 + 11*y^2) * (x^10 - 11*y*x^9 + 55*y^2*x^8 - 121*y^3*x^7 - 121*y^4*x^6 + 1331*y^5*x^5 - 1331*y^6*x^4 - 14641*y^7*x^3 + 73205*y^8*x^2 - 161051*y^9*x + 161051*y^10) * (x^10 + 11*y*x^9 + 55*y^2*x^8 + 121*y^3*x^7 - 121*y^4*x^6 - 1331*y^5*x^5 - 1331*y^6*x^4 + 14641*y^7*x^3 + 73205*y^8*x^2 + 161051*y^9*x + 161051*y^10)
x^23+y^23 = (x + y) * (x^22 - y*x^21 + y^2*x^20 - y^3*x^19 + y^4*x^18 - y^5*x^17 + y^6*x^16 - y^7*x^15 + y^8*x^14 - y^9*x^13 + y^10*x^12 - y^11*x^11 + y^12*x^10 - y^13*x^9 + y^14*x^8 - y^15*x^7 + y^16*x^6 - y^17*x^5 + y^18*x^4 - y^19*x^3 + y^20*x^2 - y^21*x + y^22)
x^23-y^23 = (x - y) * (x^22 + y*x^21 + y^2*x^20 + y^3*x^19 + y^4*x^18 + y^5*x^17 + y^6*x^16 + y^7*x^15 + y^8*x^14 + y^9*x^13 + y^10*x^12 + y^11*x^11 + y^12*x^10 + y^13*x^9 + y^14*x^8 + y^15*x^7 + y^16*x^6 + y^17*x^5 + y^18*x^4 + y^19*x^3 + y^20*x^2 + y^21*x + y^22)
x^24-y^24 = (x - y) * (x + y) * (x^2 + y^2) * (x^2 - y*x + y^2) * (x^2 + y*x + y^2) * (x^4 + y^4) * (x^4 - y^2*x^2 + y^4) * (x^8 - y^4*x^4 + y^8)
x^24-4096*y^24 = (x^2 - 2*y^2) * (x^2 + 2*y^2) * (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^4 - 2*y^2*x^2 + 4*y^4) * (x^4 + 2*y^2*x^2 + 4*y^4) * (x^4 - 2*y*x^3 + 2*y^2*x^2 - 4*y^3*x + 4*y^4) * (x^4 + 2*y*x^3 + 2*y^2*x^2 + 4*y^3*x + 4*y^4)
x^24-531441*y^24 = (x^2 - 3*y^2) * (x^2 + 3*y^2) * (x^2 - 3*y*x + 3*y^2) * (x^2 + 3*y*x + 3*y^2) * (x^4 + 9*y^4) * (x^4 + 3*y^2*x^2 + 9*y^4) * (x^8 - 9*y^4*x^4 + 81*y^8)
x^24-2176782336*y^24 = (x^2 - 6*y^2) * (x^2 + 6*y^2) * (x^4 + 36*y^4) * (x^4 - 6*y^2*x^2 + 36*y^4) * (x^4 + 6*y^2*x^2 + 36*y^4) * (x^4 - 6*y*x^3 + 18*y^2*x^2 - 36*y^3*x + 36*y^4) * (x^4 + 6*y*x^3 + 18*y^2*x^2 + 36*y^3*x + 36*y^4)
x^25+y^25 = (x + y) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4) * (x^20 - y^5*x^15 + y^10*x^10 - y^15*x^5 + y^20)
x^25-y^25 = (x - y) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4) * (x^20 + y^5*x^15 + y^10*x^10 + y^15*x^5 + y^20)
x^26-y^26 = (x - y) * (x + y) * (x^12 - y*x^11 + y^2*x^10 - y^3*x^9 + y^4*x^8 - y^5*x^7 + y^6*x^6 - y^7*x^5 + y^8*x^4 - y^9*x^3 + y^10*x^2 - y^11*x + y^12) * (x^12 + y*x^11 + y^2*x^10 + y^3*x^9 + y^4*x^8 + y^5*x^7 + y^6*x^6 + y^7*x^5 + y^8*x^4 + y^9*x^3 + y^10*x^2 + y^11*x + y^12)
x^26-302875106592253*y^26 = (x^2 - 13*y^2) * (x^12 - 13*y*x^11 + 91*y^2*x^10 - 507*y^3*x^9 + 2535*y^4*x^8 - 10985*y^5*x^7 + 41743*y^6*x^6 - 142805*y^7*x^5 + 428415*y^8*x^4 - 1113879*y^9*x^3 + 2599051*y^10*x^2 - 4826809*y^11*x + 4826809*y^12) * (x^12 + 13*y*x^11 + 91*y^2*x^10 + 507*y^3*x^9 + 2535*y^4*x^8 + 10985*y^5*x^7 + 41743*y^6*x^6 + 142805*y^7*x^5 + 428415*y^8*x^4 + 1113879*y^9*x^3 + 2599051*y^10*x^2 + 4826809*y^11*x + 4826809*y^12)
x^27+y^27 = (x + y) * (x^2 - y*x + y^2) * (x^6 - y^3*x^3 + y^6) * (x^18 - y^9*x^9 + y^18)
x^27-y^27 = (x - y) * (x^2 + y*x + y^2) * (x^6 + y^3*x^3 + y^6) * (x^18 + y^9*x^9 + y^18)
x^28-y^28 = (x - y) * (x + y) * (x^2 + y^2) * (x^6 - y*x^5 + y^2*x^4 - y^3*x^3 + y^4*x^2 - y^5*x + y^6) * (x^6 + y*x^5 + y^2*x^4 + y^3*x^3 + y^4*x^2 + y^5*x + y^6) * (x^12 - y^2*x^10 + y^4*x^8 - y^6*x^6 + y^8*x^4 - y^10*x^2 + y^12)
x^28+16384*y^28 = (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^12 - 2*y*x^11 + 2*y^2*x^10 - 4*y^4*x^8 + 8*y^5*x^7 - 8*y^6*x^6 + 16*y^7*x^5 - 16*y^8*x^4 + 32*y^10*x^2 - 64*y^11*x + 64*y^12) * (x^12 + 2*y*x^11 + 2*y^2*x^10 - 4*y^4*x^8 - 8*y^5*x^7 - 8*y^6*x^6 - 16*y^7*x^5 - 16*y^8*x^4 + 32*y^10*x^2 + 64*y^11*x + 64*y^12)
x^28-678223072849*y^28 = (x^2 - 7*y^2) * (x^2 + 7*y^2) * (x^6 - 7*y*x^5 + 21*y^2*x^4 - 49*y^3*x^3 + 147*y^4*x^2 - 343*y^5*x + 343*y^6) * (x^6 + 7*y*x^5 + 21*y^2*x^4 + 49*y^3*x^3 + 147*y^4*x^2 + 343*y^5*x + 343*y^6) * (x^12 + 7*y^2*x^10 + 49*y^4*x^8 + 343*y^6*x^6 + 2401*y^8*x^4 + 16807*y^10*x^2 + 117649*y^12)
x^28+11112006825558016*y^28 = (x^4 + 196*y^4) * (x^12 - 14*y*x^11 + 98*y^2*x^10 - 392*y^3*x^9 + 588*y^4*x^8 + 2744*y^5*x^7 - 19208*y^6*x^6 + 38416*y^7*x^5 + 115248*y^8*x^4 - 1075648*y^9*x^3 + 3764768*y^10*x^2 - 7529536*y^11*x + 7529536*y^12) * (x^12 + 14*y*x^11 + 98*y^2*x^10 + 392*y^3*x^9 + 588*y^4*x^8 - 2744*y^5*x^7 - 19208*y^6*x^6 - 38416*y^7*x^5 + 115248*y^8*x^4 + 1075648*y^9*x^3 + 3764768*y^10*x^2 + 7529536*y^11*x + 7529536*y^12)
x^29+y^29 = (x + y) * (x^28 - y*x^27 + y^2*x^26 - y^3*x^25 + y^4*x^24 - y^5*x^23 + y^6*x^22 - y^7*x^21 + y^8*x^20 - y^9*x^19 + y^10*x^18 - y^11*x^17 + y^12*x^16 - y^13*x^15 + y^14*x^14 - y^15*x^13 + y^16*x^12 - y^17*x^11 + y^18*x^10 - y^19*x^9 + y^20*x^8 - y^21*x^7 + y^22*x^6 - y^23*x^5 + y^24*x^4 - y^25*x^3 + y^26*x^2 - y^27*x + y^28)
x^29-y^29 = (x - y) * (x^28 + y*x^27 + y^2*x^26 + y^3*x^25 + y^4*x^24 + y^5*x^23 + y^6*x^22 + y^7*x^21 + y^8*x^20 + y^9*x^19 + y^10*x^18 + y^11*x^17 + y^12*x^16 + y^13*x^15 + y^14*x^14 + y^15*x^13 + y^16*x^12 + y^17*x^11 + y^18*x^10 + y^19*x^9 + y^20*x^8 + y^21*x^7 + y^22*x^6 + y^23*x^5 + y^24*x^4 + y^25*x^3 + y^26*x^2 + y^27*x + y^28)
x^30-y^30 = (x - y) * (x + y) * (x^2 - y*x + y^2) * (x^2 + y*x + y^2) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4) * (x^8 - y*x^7 + y^3*x^5 - y^4*x^4 + y^5*x^3 - y^7*x + y^8) * (x^8 + y*x^7 - y^3*x^5 - y^4*x^4 - y^5*x^3 + y^7*x + y^8)
x^30+14348907*y^30 = (x^2 + 3*y^2) * (x^2 - 3*y*x + 3*y^2) * (x^2 + 3*y*x + 3*y^2) * (x^8 - 3*y^2*x^6 + 9*y^4*x^4 - 27*y^6*x^2 + 81*y^8) * (x^8 - 3*y*x^7 + 6*y^2*x^6 - 9*y^3*x^5 + 9*y^4*x^4 - 27*y^5*x^3 + 54*y^6*x^2 - 81*y^7*x + 81*y^8) * (x^8 + 3*y*x^7 + 6*y^2*x^6 + 9*y^3*x^5 + 9*y^4*x^4 + 27*y^5*x^3 + 54*y^6*x^2 + 81*y^7*x + 81*y^8)
x^30-30517578125*y^30 = (x^2 - 5*y^2) * (x^4 + 5*y^2*x^2 + 25*y^4) * (x^4 - 5*y*x^3 + 15*y^2*x^2 - 25*y^3*x + 25*y^4) * (x^4 + 5*y*x^3 + 15*y^2*x^2 + 25*y^3*x + 25*y^4) * (x^8 - 5*y*x^7 + 10*y^2*x^6 - 25*y^3*x^5 + 75*y^4*x^4 - 125*y^5*x^3 + 250*y^6*x^2 - 625*y^7*x + 625*y^8) * (x^8 + 5*y*x^7 + 10*y^2*x^6 + 25*y^3*x^5 + 75*y^4*x^4 + 125*y^5*x^3 + 250*y^6*x^2 + 625*y^7*x + 625*y^8)
x^30+437893890380859375*y^30 = (x^2 + 15*y^2) * (x^4 - 15*y^2*x^2 + 225*y^4) * (x^8 - 15*y^2*x^6 + 225*y^4*x^4 - 3375*y^6*x^2 + 50625*y^8) * (x^8 - 15*y*x^7 + 120*y^2*x^6 - 675*y^3*x^5 + 2925*y^4*x^4 - 10125*y^5*x^3 + 27000*y^6*x^2 - 50625*y^7*x + 50625*y^8) * (x^8 + 15*y*x^7 + 120*y^2*x^6 + 675*y^3*x^5 + 2925*y^4*x^4 + 10125*y^5*x^3 + 27000*y^6*x^2 + 50625*y^7*x + 50625*y^8)
x^31+y^31 = (x + y) * (x^30 - y*x^29 + y^2*x^28 - y^3*x^27 + y^4*x^26 - y^5*x^25 + y^6*x^24 - y^7*x^23 + y^8*x^22 - y^9*x^21 + y^10*x^20 - y^11*x^19 + y^12*x^18 - y^13*x^17 + y^14*x^16 - y^15*x^15 + y^16*x^14 - y^17*x^13 + y^18*x^12 - y^19*x^11 + y^20*x^10 - y^21*x^9 + y^22*x^8 - y^23*x^7 + y^24*x^6 - y^25*x^5 + y^26*x^4 - y^27*x^3 + y^28*x^2 - y^29*x + y^30)
x^31-y^31 = (x - y) * (x^30 + y*x^29 + y^2*x^28 + y^3*x^27 + y^4*x^26 + y^5*x^25 + y^6*x^24 + y^7*x^23 + y^8*x^22 + y^9*x^21 + y^10*x^20 + y^11*x^19 + y^12*x^18 + y^13*x^17 + y^14*x^16 + y^15*x^15 + y^16*x^14 + y^17*x^13 + y^18*x^12 + y^19*x^11 + y^20*x^10 + y^21*x^9 + y^22*x^8 + y^23*x^7 + y^24*x^6 + y^25*x^5 + y^26*x^4 + y^27*x^3 + y^28*x^2 + y^29*x + y^30)
x^32-y^32 = (x - y) * (x + y) * (x^2 + y^2) * (x^4 + y^4) * (x^8+y^8) * (x^16 + y^16)
x^32-65536*y^32 = (x^2 - 2*y^2) * (x^2 + 2*y^2) * (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^8 + 16*y^8) * (x^16 + 256*y^16)
x^33+y^33 = (x + y) * (x^2 - y*x + y^2) * (x^10 - y*x^9 + y^2*x^8 - y^3*x^7 + y^4*x^6 - y^5*x^5 + y^6*x^4 - y^7*x^3 + y^8*x^2 - y^9*x + y^10) * (x^20 + y*x^19 - y^3*x^17 - y^4*x^16 + y^6*x^14 + y^7*x^13 - y^9*x^11 - y^10*x^10 - y^11*x^9 + y^13*x^7 + y^14*x^6 - y^16*x^4 - y^17*x^3 + y^19*x + y^20)
x^33-y^33 = (x - y) * (x^2 + y*x + y^2) * (x^10 + y*x^9 + y^2*x^8 + y^3*x^7 + y^4*x^6 + y^5*x^5 + y^6*x^4 + y^7*x^3 + y^8*x^2 + y^9*x + y^10) * (x^20 - y*x^19 + y^3*x^17 - y^4*x^16 + y^6*x^14 - y^7*x^13 + y^9*x^11 - y^10*x^10 + y^11*x^9 - y^13*x^7 + y^14*x^6 - y^16*x^4 + y^17*x^3 - y^19*x + y^20)
x^34-y^34 = (x - y) * (x + y) * (x^16 - y*x^15 + y^2*x^14 - y^3*x^13 + y^4*x^12 - y^5*x^11 + y^6*x^10 - y^7*x^9 + y^8*x^8 - y^9*x^7 + y^10*x^6 - y^11*x^5 + y^12*x^4 - y^13*x^3 + y^14*x^2 - y^15*x + y^16) * (x^16 + y*x^15 + y^2*x^14 + y^3*x^13 + y^4*x^12 + y^5*x^11 + y^6*x^10 + y^7*x^9 + y^8*x^8 + y^9*x^7 + y^10*x^6 + y^11*x^5 + y^12*x^4 + y^13*x^3 + y^14*x^2 + y^15*x + y^16)
x^34-827240261886336764177*y^34 = (x^2 - 17*y^2) * (x^16 - 17*y*x^15 + 153*y^2*x^14 - 867*y^3*x^13 + 3179*y^4*x^12 - 4913*y^5*x^11 - 24565*y^6*x^10 + 250563*y^7*x^9 - 1252815*y^8*x^8 + 4259571*y^9*x^7 - 7099285*y^10*x^6 - 24137569*y^11*x^5 + 265513259*y^12*x^4 - 1231016019*y^13*x^3 + 3693048057*y^14*x^2 - 6975757441*y^15*x + 6975757441*y^16) * (x^16 + 17*y*x^15 + 153*y^2*x^14 + 867*y^3*x^13 + 3179*y^4*x^12 + 4913*y^5*x^11 - 24565*y^6*x^10 - 250563*y^7*x^9 - 1252815*y^8*x^8 - 4259571*y^9*x^7 - 7099285*y^10*x^6 + 24137569*y^11*x^5 + 265513259*y^12*x^4 + 1231016019*y^13*x^3 + 3693048057*y^14*x^2 + 6975757441*y^15*x + 6975757441*y^16)
x^35+y^35 = (x + y) * (x^4 - y*x^3 + y^2*x^2 - y^3*x + y^4) * (x^6 - y*x^5 + y^2*x^4 - y^3*x^3 + y^4*x^2 - y^5*x + y^6) * (x^24 + y*x^23 - y^5*x^19 - y^6*x^18 - y^7*x^17 - y^8*x^16 + y^10*x^14 + y^11*x^13 + y^12*x^12 + y^13*x^11 + y^14*x^10 - y^16*x^8 - y^17*x^7 - y^18*x^6 - y^19*x^5 + y^23*x + y^24)
x^35-y^35 = (x - y) * (x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4) * (x^6 + y*x^5 + y^2*x^4 + y^3*x^3 + y^4*x^2 + y^5*x + y^6) * (x^24 - y*x^23 + y^5*x^19 - y^6*x^18 + y^7*x^17 - y^8*x^16 + y^10*x^14 - y^11*x^13 + y^12*x^12 - y^13*x^11 + y^14*x^10 - y^16*x^8 + y^17*x^7 - y^18*x^6 + y^19*x^5 - y^23*x + y^24)
x^36-y^36 = (x - y) * (x + y) * (x^2 + y^2) * (x^2 - y*x + y^2) * (x^2 + y*x + y^2) * (x^4 - y^2*x^2 + y^4) * (x^6 - y^3*x^3 + y^6) * (x^6 + y^3*x^3 + y^6) * (x^12 - y^6*x^6 + y^12)
x^36+262144*y^36 = (x^2 - 2*y*x + 2*y^2) * (x^2 + 2*y*x + 2*y^2) * (x^4 - 2*y*x^3 + 2*y^2*x^2 - 4*y^3*x + 4*y^4) * (x^4 + 2*y*x^3 + 2*y^2*x^2 + 4*y^3*x + 4*y^4) * (x^12 - 4*y^3*x^9 + 8*y^6*x^6 - 32*y^9*x^3 + 64*y^12) * (x^12 + 4*y^3*x^9 + 8*y^6*x^6 + 32*y^9*x^3 + 64*y^12)
x^36-387420489*y^36 = (x^2 - 3*y^2) * (x^2 + 3*y^2) * (x^2 - 3*y*x + 3*y^2) * (x^2 + 3*y*x + 3*y^2) * (x^4 + 3*y^2*x^2 + 9*y^4) * (x^6 - 9*y^3*x^3 + 27*y^6) * (x^6 + 9*y^3*x^3 + 27*y^6) * (x^12 + 27*y^6*x^6 + 729*y^12)
x^36+101559956668416*y^36 = (x^4 + 36*y^4) * (x^4 - 6*y*x^3 + 18*y^2*x^2 - 36*y^3*x + 36*y^4) * (x^4 + 6*y*x^3 + 18*y^2*x^2 + 36*y^3*x + 36*y^4) * (x^12 - 36*y^3*x^9 + 648*y^6*x^6 - 7776*y^9*x^3 + 46656*y^12) * (x^12 + 36*y^3*x^9 + 648*y^6*x^6 + 7776*y^9*x^3 + 46656*y^12)