Co-authored Articles

12.          Stevenson, S.; Liu, X.; Sublett, D. M.; Koenig, R. M.; Seeler, T. L.; Tepper, K. R.; Franklin, H. M.; Wang, X.; Huang, R.; Feng, X.; Cover, K.; Troya, D.; Shanaiah, N.; Bodnar, R. J.; Dorn, H. C., Semiconducting and Metallic [5,5] Fullertube Nanowires: Characterization of Pristine D5h(1)-C90 and D5d(1)-C100. J. Am. Chem. Soc. 2021, 143 (12), 4593-4599

https://doi.org/10.1021/jacs.0c11357

11.          Feng, X.; Onel, O.; Council-Troche, M.; Noble, A.; Yoon, R.-H.; Morris, J. R., A study of rare earth ion-adsorption clays: The speciation of rare earth elements on kaolinite at basic pH. Appl. Clay Sci. 2021, 201, 105920

https://doi.org/10.1016/j.clay.2020.105920

10.          Feng, X.; Davis, B.; Zhang, J., Thorium tetrafluoride analyzed by XPS. Surf. Sci. Spectra 2020, 27 (2), 024002

https://doi.org/10.1116/6.0000300

9.         Wu, X.; Liu, T.; Bai, Y.; Feng, X.; Rahman, M. M.; Sun, C.-J.; Lin, F.; Zhao, K.; Du, Z., Effects of solvent formulations in electrolytes on fast charging of Li-ion cells. Electrochim. Acta 2020, 353, 136453 . 

https://doi.org/10.1016/j.electacta.2020.136453

8.          Zhang, S.; Pollard, T. P.; Feng, X.; Borodin, O.; Xu, K.; Li, Z., Altering electrochemical pathway of sulfur chemistry with oxygen for high energy density and low shuttling in Na-S battery. ACS Energy Lett. 2020, 5 (4), 1070-1076. 

https://doi.org/10.1021/acsenergylett.9b02746

7.          Feng, X.; D’Souza, B.; Zhang, J., Uranium tetrafluoride (UF4) powder analyzed by XPS. Surface Science Spectra 2019, 26 (2), 024008. 

https://doi.org/10.1116/1.5119805

6.          Kharel, G.; Sacko, O.; Feng, X.; Morris, J. R.; Phillips, C. L.; Trippe, K.; Kumar, S.; Lee, J. W., Biochar Surface Oxygenation by Ozonization for Super High Cation Exchange Capacity. ACS Sustainable Chemistry & Engineering 2019, 7 (19), 16410-16418. 

https://doi.org/10.1021/acssuschemeng.9b03536

5.          Ogbu, C. I.; Feng, X.; Dada, S. N.; Bishop, G. W., Screen-Printed Soft-Nitrided Carbon Electrodes for Detection of Hydrogen Peroxide. Sensors 2019, 19 (17), 3741. 

https://doi.org/10.3390/s19173741

4.           Wu, C.; Wang, K.; Feng, X.; Jiang, Y.; Yang, D.; Hou, Y.; Yan, Y.; Sanghadasa, M.; Priya, S., Ultrahigh Durability Perovskite Solar Cells. Nano Lett. 2019, 19 (2), 1251-1259.   

https://doi.org/10.1021/acs.nanolett.8b04778

3.            Mu, L.; Feng, X.; Kou, R.; Zhang, Y.; Guo, H.; Tian, C.; Sun, C.-J.; Du, X.-W.; Nordlund, D.; Xin, H. L.; et al. Deciphering the Cathode–Electrolyte Interfacial Chemistry in Sodium Layered Cathode Materials. Adv. Energy Mater. 2018, 8 (34), 1801975.    

https://doi.org/10.1002/aenm.201801975

2.            Kautz, D. J.; Tao, L.; Mu, L.; Nordlund, D.; Feng, X.; Zheng, Z.; Lin, F. Understanding the Critical Chemistry to Inhibit Lithium Consumption in Lean Lithium Metal Composite Anodes. J. Mater. Chem. A 2018, 6 (33), 16003–16011.  

https://doi.org/10.1039/C8TA01715H

1.            Mu, L.; Rahman, M. M.; Zhang, Y.; Feng, X.; Du, X.-W.; Nordlund, D.; Lin, F. Surface Transformation by a “Cocktail” Solvent Enables Stable Cathode Materials for Sodium Ion Batteries. J. Mater. Chem. A 2018, 6 (6), 2758–2766. 

https://doi.org/10.1039/C7TA08410B

Acknowledged Articles

32.       D’Souza, B.; Zhuo, W.; Yang, Q.; Leong, A.; Zhang, J., Impurity driven corrosion behavior of HAYNES® 230® alloy in molten chloride Salt. Corrosion Science 2021, 187, 109483.

https://doi.org/10.1016/j.corsci.2021.109483

31.       D’Souza, B.; Leong, A.; Yang, Q.; Zhang, J., Corrosion behavior of boronized nickel-based alloys in the molten chloride Salt. Corros. Sci. 2021, 182, 109285.

https://doi.org/10.1016/j.corsci.2021.109285

30.       Hosseini, M.; Chin, A. W. H.; Behzadinasab, S.; Poon, L. L. M.; Ducker, W. A., Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids. ACS Appl. Mater. Interfaces 2021, 13 (5), 5919-5928.

https://doi.org/10.1021/acsami.0c19465

29.       Hendren, K. D.; Hough, S. A.; Knott, K.; Lu, W.; Deck, P. A.; Foster, E. J., Anchored metallocene linear low-density polyethene cellulose nanocrystal composites. Polym. Int. 2021, 70 (5), 564-572.

https://doi.org/10.1002/pi.6146

28.       Yang, Z.; Mu, L.; Hou, D.; Rahman, M. M.; Xu, Z.; Liu, J.; Nordlund, D.; Sun, C.-J.; Xiao, X.; Lin, F., Probing Dopant Redistribution, Phase Propagation, and Local Chemical Changes in the Synthesis of Layered Oxide Battery Cathodes. Adv. Energy Mater. 2021, 11 (1), 2002719.

https://doi.org/10.1002/aenm.202002719

27.       Lee, S.-Y.; Moore, R. B.; Mahajan, R. L., An Al-assisted GO/rGO Janus film: Fabrication and hygroscopic properties. Carbon 2021, 171, 585-596.

https://doi.org/10.1016/j.carbon.2020.09.002

26.       Cai, M.; Ding, S.; Gibbons, B.; Yang, X.; Kessinger, M. C.; Morris, A. J., Nickel(ii)-modified covalent-organic framework film for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF). Chem. Commun. 2020, 56 (92), 14361-14364.

https://doi.org/10.1039/D0CC02206C

25.       Gao, Q.; Mou, T.; Liu, S.; Johnson, G.; Han, X.; Yan, Z.; Ji, M.; He, Q.; Zhang, S.; Xin, H.; Zhu, H., Monodisperse PdSn/SnOx core/shell nanoparticles with superior electrocatalytic ethanol oxidation performance. J. Mater. Chem. A 2020, 8 (40), 20931-20938.

https://doi.org/10.1039/D0TA08693B

24.       Hu, A.; Jiang, Z.; Kuai, C.; McGuigan, S.; Nordlund, D.; Liu, Y.; Lin, F., Uncovering phase transformation, morphological evolution, and nanoscale color heterogeneity in tungsten oxide electrochromic materials. J. Mater. Chem. A 2020, 8 (38), 20000-20010.

https://doi.org/10.1039/D0TA06612E

23.       Mu, L.; Yang, Z.; Tao, L.; Waters, C. K.; Xu, Z.; Li, L.; Sainio, S.; Du, Y.; Xin, H. L.; Nordlund, D.; Lin, F., The sensitive surface chemistry of Co-free, Ni-rich layered oxides: identifying experimental conditions that influence characterization results. J. Mater. Chem. A 2020, 8 (34), 17487-17497.

https://doi.org/10.1039/D0TA06375D

22.       Behzadinasab, S.; Chin, A.; Hosseini, M.; Poon, L.; Ducker, W. A., A Surface Coating that Rapidly Inactivates SARS-CoV-2. ACS Appl. Mater. Interfaces 2020, 12 (31), 34723-34727.

https://doi.org/10.1021/acsami.0c11425

21.       Liu, T.; Serrano, J.; Elliott, J.; Yang, X.; Cathcart, W.; Wang, Z.; He, Z.; Liu, G., Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers. Sci. Adv. 2020, 6 (16), eaaz0906.

https://doi.org/10.1126/sciadv.aaz0906

20.       Bonnett, B. L.; Smith, E. D.; De La Garza, M.; Cai, M.; Haag, J. V.; Serrano, J. M.; Cornell, H. D.; Gibbons, B.; Martin, S. M.; Morris, A. J., PCN-222 Metal–Organic Framework Nanoparticles with Tunable Pore Size for Nanocomposite Reverse Osmosis Membranes. ACS Appl. Mater. Interfaces 2020, 12 (13), 15765-15773.

https://doi.org/10.1021/acsami.0c04349

19.       Xiao, L.; Huang, R.; Zhang, Y.; Li, T.; Dai, J.; Nannapuneni, N.; Chastanet, T. R.; Chen, M.; Shen, F. H.; Jin, L.; Dorn, H. C.; Li, X., A New Formyl Peptide Receptor-1 Antagonist Conjugated Fullerene Nanoparticle for Targeted Treatment of Degenerative Disc Diseases. ACS Appl. Mater. Interfaces 2019, 11 (42), 38405-38416.

https://doi.org/10.1021/acsami.9b11783

18.       Cao, K.; Stovall, B. J.; Arrington, C. B.; Xu, Z.; Long, T. E.; Odle, R. R.; Liu, G., Facile Preparation of Halogen-Free Poly(ether imide) Containing Phosphonium and Sulfonate Groups. ACS Applied Polymer Materials 2020, 2 (1), 66-73.      

https://doi.org/10.1021/acsapm.9b00938

17.          Hendren, K. D.; Baughman, T. W.; Deck, P. A.; Foster, E. J., In situ dispersion and polymerization of polyethylene cellulose nanocrystal-based nanocomposites. J. Appl. Polym. Sci. 2020, 137 (13), 48500.        

https://doi.org/10.1002/app.48500

16.           Tao, L.; Xu, Z.; Kuai, C.; Zheng, X.; Wall, C. E.; Jiang, C.; Esker, A. R.; Zheng, Z.; Lin, F., Flexible Lignin Carbon Membranes with Surface Ozonolysis to Host Lean Lithium Metal Anodes for Nickel-Rich Layered Oxide Batteries. Energy Storage Materials 2019, 24, 129-137.       

https://doi.org/10.1016/j.ensm.2019.08.027

15.           Zhou, Z.; Liu, T.; Khan, A. U.; Liu, G., Controlling the physical and electrochemical properties of block copolymer-based porous carbon fibers by pyrolysis temperature. Molecular Systems Design & Engineering 2020, 5 (1), 153-165.      

https://doi.org/10.1039/C9ME00066F

14.           Rahman, M. M.; Zhang, Y.; Xia, S.; Kan, W. H.; Avdeev, M.; Mu, L.; Sokaras, D.; Kroll, T.; Du, X.-W.; Nordlund, D.; Liu, Y.; Lin, F., Surface Characterization of Li-Substituted Compositionally Heterogeneous NaLi0.045Cu0.185Fe0.265Mn0.505O2 Sodium-Ion Cathode Material. J. Phys. Chem. C 2019, 123 (18), 11428-11435.     

https://doi.org/10.1021/acs.jpcc.9b01126

13.           Liu, T.; Zhou, Z.; Guo, Y.; Guo, D.; Liu, G., Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings. Nature Communications 2019, 10 (1), 675.      

https://doi.org/10.1038/s41467-019-08644-w

12.          Zhou, Z.; Liu, T.; Khan, A. U.; Liu, G., Block copolymer–based porous carbon fibers. Science Advances 2019, 5 (2), eaau6852.       

https://doi.org/10.1126/sciadv.aau6852

11.           Lee, S.-Y.; Singh, P.; Mahajan, R. L., Role of oxygen functional groups for improved performance of graphene-silicone composites as a thermal interface material. Carbon 2019, 145, 131-139.    

https://doi.org/10.1016/j.carbon.2018.12.054

10.            DePonte, M. C.; Wilke, J. A.; Boyle, D. T.; Gillum, M. Z.; Schlosser, D. A.; Lam, V. H.; Kaleem, H.; Maxwell, E. M.; Baber, A. E. Low–temperature Exchange of Hydrogen and Deuterium between Molecular Ethanol and Water on Au(111). Surf. Sci. 2019, 680, 1–5.   

https://doi.org/10.1016/j.susc.2018.10.001

9.            Liu, T.; Kou, T.; Bulmahn, D.; Ortuno-Quintana, C.; Liu, G.; Lu, J. Q.; Li, Y., Tuning the Electrochemical Properties of Nitrogen-Doped Carbon Aerogels in a Blend of Ammonia and Nitrogen Gases. ACS Applied Energy Materials 2018, 1 (9), 5043-5053.     

https://doi.org/10.1021/acsaem.8b01055

8.            Pan, X.; Liu, T.; Kautz, D. J.; Mu, L.; Tian, C.; Long, T. E.; Yang, P.; Lin, F. High-Performance N-Methyl-N-Propylpiperidinium Bis(Trifluoromethanesulfonyl)Imide / Poly(Vinylidene Fluoride-Hexafluoropropylene) Gel Polymer Electrolytes for Lithium Metal Batteries. J. Power Sources 2018, 403, 127–136.    

https://doi.org/10.1016/j.jpowsour.2018.09.080

7.            Zhang, R.; Fallon, J. J.; Joseph, R. M.; Thomas, J. A.; Hassan, M. S.; Choudhury, S. R.; Gilmer, E. L.; Kubota, M.; Deitzel, J. M.; Riffle, J. S.; et al. Preparation of Submicrometer High-Performance Poly(Ether Imide) Particles for Fabricating Carbon Fiber Reinforced Polymer Composites. Ind. Eng. Chem. Res. 2018, 57 (45), 15346–15356.   

https://doi.org/10.1021/acs.iecr.8b02930

6.            Driscoll, D. M.; Troya, D.; Usov, P. M.; Maynes, A. J.; Morris, A. J.; Morris, J. R. Characterization of Undercoordinated Zr Defect Sites in UiO-66 with Vibrational Spectroscopy of Adsorbed CO. J. Phys. Chem. C 2018, 122 (26), 14582–14589. 

https://doi.org/10.1021/acs.jpcc.8b03283

5.            Wu, C.; Li, H.; Yan, Y.; Chi, B.; Felice, K. M.; Moore, R. B.; Magill, B. A.; Mudiyanselage, R. R. H. H.; Khodaparast, G. A.; Sanghadasa, M.; Priya, S., Highly‐Stable Organo‐Lead Halide Perovskites Synthesized Through Green Self‐Assembly Process. Solar RRL 2018, 1800052.

https://doi.org/10.1002/solr.201800052

4.            Zhang, W.; Honaker, R. Q. Flotation of Monazite in the Presence of Calcite Part II: Enhanced Separation Performance Using Sodium Silicate and EDTA. Miner. Eng. 2018, 127, 318–328.  

https://doi.org/10.1016/j.mineng.2018.01.042

3.            Mon, H.; Chang, Y.-R.; Ritter, A. L.; Falkinham, J. O.; Ducker, W. A. Effects of Colloidal Crystals, Antibiotics, and Surface-Bound Antimicrobials on Pseudomonas Aeruginosa Surface Density. ACS Biomater. Sci. Eng. 2018, 4 (1), 257–265. 

https://doi.org/10.1021/acsbiomaterials.7b00799

2.            Wu, W.; Guo, S.; Zhang, J. Exchange Current Densities and Charge-Transfer Coefficients of Chromium and Iron Dissolution in Molten LiF-NaF-KF Eutectic. J. Electrochem. Soc. 2017, 164 (13), C840–C844.   

https://doi.org/10.1149/2.1371713jes 

1.            Guo, S.; Shay, N.; Wang, Y.; Zhou, W.; Zhang, J. Measurement of Europium (III)/Europium (II) Couple in Fluoride Molten Salt for Redox Control in a Molten Salt Reactor Concept. J. Nucl. Mater. 2017, 496 (Supplement C), 197–206.  

https://doi.org/10.1016/j.jnucmat.2017.09.027