Yoshihiro Kaneko

Associate Professor of Geophysics

Kyoto University

Department of Geophysics, Graduate School of Science

Kyoto, Japan

Email:kaneko.yoshihiro.4e[a]kyoto-u.ac.jp
Phone: +81-75-753-3946 (Office)
Office location: Grad School Science Building No 1, Room 253
Mailing Address (in English):Department of GeophysicsGraduate School of Science, Kyoto UniversityPostal Code: 606-8502Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan
Mailing Address (in Japanese):〒606-8502京都市左京区北白川追分町京都大学理学研究科地球物理学教室
I am an associate professor of geophysics at Kyoto University in the Department of Geophysics.  Before joining Kyoto University, I was a research seismologist at GNS Science, New Zealand. I conducted postdoctoral research at Scripps Institution of Oceanography (UC San Diego) and Woods Hole Oceanographic Institution. I completed my PhD in geophysics at the Seismological Laboratory at California Institute of Technology (Caltech) in Pasadena, California, USA.
At Kyoto University, I teach Continuum Mechanics of Elastic Solid (弾性体力学) and Computational Geophysics (課題演習DC), and co-teach Introduction to Geophysics II (地球物理学概論II) and Physics of the Earth (地球の物理).

Research Interest
  • Earthquake source physics
  • Computational seismology
  • Strong ground motions
  • Seismic imaging
  • Coupled earthquake-atmosphere-ionosphere dynamics


Research GroupSamriddhi Mishra, Yoshito Nozuka, Yuto Kano, Reiju Norisugi, Rintaro Enomoto, Mei Kikuchi, Sae Watanabe
Previous Group MembersBryant Chow (PhD at VUW, 2021 with Dean's List; Now Assistant Professor at University of Alaska - Fairbanks)Jesse KearseClarrie MacklinYuhi Sakaguchi (BS at Kyoto U, 2022)Takumi Aoki (MS at Kyoto U, 2023)Ryo Ito (MS at Kyoto U, 2023)Kazuki Masuda (MS at Kyoto U, 2023)Andrea Perez-Silva (PhD at VUW, 2023 with Dean's List; Now Postdoc at University of Otago)Shun Adachi (MS at Kyoto U, 2024)Kai Koyama (BS at Kyoto U, 2024)
Professional Appointments
  • Associate Professor, Kyoto University, Japan, April 2020 - present
  • Seismologist (permanent position), GNS Science, New Zealand
Senior Scientist 2, July 2017 - March 2020Senior Scientist 1, July 2015 - June 2017Scientist 2, December 2012 - June 2015 
  • Postdoctoral Scholar, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, March 2012 - November 2012
  • SIO Prized Postdoctoral Fellow, Scripps Institution of Oceanography, University of California - San Diego, CA, USA, August 2009 - February 2012


Education
  • Ph.D. Geophysics, California Institute of Technology, CA, USA, June 2009
  • M.S. Geophysics, California Institute of Technology, CA, USA, June 2005
  • B.S. Applied Geophysics - Summa Cum Laude, University of California - Los Angeles, CA, USA, June 2003


Publications (Google Scholar)
  1. Kaneko, Y. and N. Lapusta (2008). Variability of earthquake nucleation in continuum models of rate-and-state faults and implications for aftershock rates. Journal of Geophysical Research, 113, B12312, doi:10.1029/2007JB005154. [pdf]
  2. Kaneko, Y., N. Lapusta, and J.-P. Ampuero (2008). Spectral element modeling of spontaneous earthquake rupture on rate and state faults: Effect of velocity-strengthening friction at shallow depths. Journal of Geophysical Research, 113, B09317, doi:10.1029/2007JB005553. [pdf]
  3. Kaneko, Y. (2009). Investigations of earthquake source processes based on fault models with variable friction rheology. PhD thesis, California Institute of Technology, Pasadena, CA. 
  4. Harris, R.A., M. Barall, R. Archuleta, E. Dunham, B. Aagaard, J.-P. Ampuero, D.J. Andrews, H. Bhat, V. Cruz-Atienza, L. Dalguer, S. Day, B. Duan, G. Ely, Y. Kaneko, Y. Kase, N. Lapusta, Y. Liu, S. Ma, D.D. Oglesby, K. Olsen, A. Pitarka, S. Song, and E. Templeton (2009). The SCEC/USGS dynamic earthquake rupture code verification exercise. Seismological Research Letters, 80(1), 119-126, doi:10.1785/gssrl.80.1.119. [pdf]
  5. Kaneko, Y., J.-P. Avouac, and N. Lapusta (2010). Towards inferring earthquake patterns from geodetic observations of interseismic coupling. Nature Geoscience, 3, 363-369, doi:10.1038/ngeo843. [pdf]
  6. Kaneko, Y. and N. Lapusta (2010). Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults. Tectonophysics, 493(3-4), 272-284, doi:10.1016/j.tecto.2010.06.015. [pdf]
  7. Kaneko, Y. and Y. Fialko (2011). Shallow slip deficit due to large strike-slip earthquakes in dynamic rupture simulations with elasto-plastic response. Geophysical Journal International, 186, 1389-1403, doi:10.1111/j.1365-246X.2011.05117.x. [pdf]
  8. Harris, R.A., M. Barall, D.J. Andrews, B. Duan, S. Ma, E.M. Dunham, A.A. Gabriel, Y. Kaneko, Y. Kase, B.T. Aagaard, D.D. Oglesby, J.-P. Ampuero, T.C. Hanks, and N. Abrahamson (2011). Verifying a computational method for predicting extreme ground motion. Seismological Research Letters, 82(5), 638-644, doi:10.1785/gssrl.82.5.638. [pdf]
  9. Kaneko, Y., J.-P. Ampuero, and N. Lapusta (2011). Spectral-element simulations of long-term fault slip: Effect of low-rigidity layers on earthquake-cycle dynamics. Journal of Geophysical Research, 116, B10313, doi:10.1029/2011JB008395. [pdf]
  10. Kaneko, Y. and J.-P. Ampuero (2011). A mechanism for preseismic steady rupture fronts observed in laboratory experiments. Geophysical Research Letters, 38, L21307, doi:10.1029/2011GL049953. [pdf]
  11. Konca, A.O., Y. Kaneko, N. Lapusta, and J.-P. Avouac (2013). Kinematic inversion of physically plausible earthquake source models obtained from dynamic rupture simulations. Bulletin of the Seismological Society of America, 103(5), 2621-2644, doi:10.1785/0120120358. [pdf]
  12. Kaneko, Y., Y. Fialko, X. Tong, D.T. Sandwell, and M. Furuya (2013). Interseismic deformation and creep along the central section of the North Anatolian fault (Turkey): InSAR observations and implications for rate-and-state friction properties. Journal of Geophysical Research, 118(1), 316-331, doi:10.1029/2012JB009661. [pdf]
  13. Wei M., Y. Kaneko, Y. Liu, and J. McGuire (2013). Episodic fault creep events in California controlled by shallow frictional heterogeneity. Nature Geoscience, 6(7), 566- 570, doi:10.1038/NGEO1835. [pdf]
  14. Kaneko, Y. and P.M. Shearer (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197(2), 1002-1015, doi:10.1093/gji/ggu030. [pdf]
  15. Kaneko, Y., I.J. Hamling, R.J. Van Dissen, M. Motagh, and S.V. Samsonov (2015). InSAR imaging of displacement on flexural-slip faults triggered by the 2013 Mw 6.6 Lake Grassmere earthquake, central New Zealand. Geophysical Research Letters, 42(3), 781-788, doi:10.1002/2014GL062767. [pdf]
  16. Kaneko, Y. and P.M. Shearer (2015). Variability of seismic source spectra, estimated stress drop and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research, 120(2), 1053-1079, doi:10.1002/2014JB011642. [pdf]
  17. Wei, M., Y. Liu, Y. Kaneko, and J.J. McGuire (2015). Dynamic triggering of creep events in the Salton Trough, Southern California by regional M > 5.4 earthquakes constrained by geodetic observations and numerical simulations. Earth and Planetary Science Letters, 427, 1-10, doi:10.1016/j.epsl.2015.06.044. [pdf]
  18. Kaneko, Y., S. Nielsen, and B. Carpenter (2016). The onset of laboratory earthquakes explained by nucleating rupture on a rate-and-state fault. Journal of Geophysical Research, 121(8), 6071-6091, doi:10.1002/2016JB013143. [pdf]
  19. Kaneko, Y., B. Carpenter, and S. Nielsen (2017). Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate-and-state fault models with SAFOD drill core data. Geophysical Research Letters, 44(1), 162–173, doi:10.1002/2016GL071569. [pdf]
  20. Kaiser, A.E., N. Balfour, B. Fry, C. Holden, N.J. Litchfield, M.C. Gerstenberger, E. D'Anastasio, N.A. Horspool, G.H. McVerry, J. Ristau, S.C. Bannister, A. Christophersen, K.J. Clark, W.L. Power, D.A. Rhoades, C.I. Massey, I.J. Hamling, L.M. Wallace, J. Mountjoy, Y. Kaneko, R.A. Benites, C. Van Houtte, G.D. Dellow, L. Wotherspoon, K. Elwood, and K.R. Gledhill (2017). The 2016 Kaikoura, New Zealand, earthquake: Preliminary seismological report. Seismological Research Letters, 88(3), 1-13, doi:10.1785/0220170018. [pdf]
  21. Kaneko, Y., E. Fukuyama, and I.J. Hamling (2017). Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw7.8 Kaikoura earthquake. Geophysical Research Letters, 44(10), 4765-4773, doi:10.1002/2017GL073681. [pdf]
  22. Wallace, L.M., Y. Kaneko, S. Hreinsdottir, I.J. Hamling, Z. Peng, N. Bartlow, E. D'Anastasio, and B. Fry (2017). Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge. Nature Geoscience, 10(10), 765-770, doi:10.1038/ngeo302. [pdf]
  23. Holden, C., Y. Kaneko, E. D'Anastasio, R. Benites, B. Fry, and I.J. Hamling (2017). The 2016 Kaikoura earthquake revealed by kinematic source inversion and seismic wavefield simulations: slow rupture propagation on a geometrically complex crustal fault network. Geophysical Research Letters, 44(22), 11320-11328, doi:10.1002/2017GL075301. [pdf]
  24. Warren-Smith, E., B. Fry, Y. Kaneko, and C.J. Chamberlain (2018). Foreshocks and delayed triggering of the 2016 MW7.1 Te Araroa earthquake and dynamic reinvigoration of its aftershock sequence by the MW7.8 Kaikoura earthquake, New Zealand. Earth and Planetary Science Letters, 482, 265-276, doi:10.1016/j.epsl.2017.11.020. [pdf]
  25. Kaneko, Y., L.M. Wallace, I.J. Hamling, and M.C. Gerstenberger (2018). Simple physical model for the probability of a subduction-zone earthquake following slow slip events and earthquakes: application to the Hikurangi megathrust, New Zealand. Geophysical Research Letters, 45(9), 3932-3941, doi:10.1029/2018GL077641. [pdf]
  26. Wei, M., Y. Kaneko, P. Shi, and Y. Liu (2018). Numerical modeling of dynamically triggered shallow slow slip events in New Zealand by the 2016 Mw 7.8 Kaikoura earthquake. Geophysical Research Letters, 45(10), 4764-4772, doi:10.1002/2018GL077879. [pdf]
  27. Massey, C.I., D.B. Townsend, E. Rathje, K.E. Allstadt, B. Lukovic, Y. Kaneko, B. Bradley, J. Wartman, R.W. Jibson, D.M. Petley, N.A. Horspool, I.J. Hamling, J.M. Carey, S.C. Cox, J. Davidson, G.D. Dellow, G.W. Godt, C. Holden, K.E. Jones, A.E. Kaiser, M. Little, B.M. Lyndsell, S. McColl, R.M. Morgenstern, F.K. Rengers, D.A. Rhoades, B.J. Rosser, D.T. Strong, C. Singeisen, and M. Villeneuve (2018). Landslides triggered by the 14 November 2016 Mw 7.8 Kaikoura earthquake. New Zealand. Bulletin of the Seismological Society of America, 108(3B), 1630-1648, doi:10.1785/0120170305. [pdf]
  28. Harris, R.A., M. Barall, B. Aagard, S. Ma, D. Roten, K. Olsen, B. Duan, D. Liu, B. Luo, K. Bai, J.-P. Ampuero, Y. Kaneko, A.-A. Gabriel, K. Duru, T. Ulrich, S. Wollherr, Z. Shi, E. Dunham, S. Bydlon, Z. Zhang, X. Chen, S.N. Somala, C. Pelties, J. Tago, V.M. Cruz-Atienza, J. Kozdon, E. Daub, K. Aslam, Y. Kase, K. Withers, and L. Dalguer (2018). A suite of exercises for verifying dynamic earthquake rupture codes. Seismological Research Letters, 89(3), 1146-1162, doi:10.1785/0220170222. [pdf]
  29. Tape, C., S. Holtkamp, V. Silwal, J. Hawthorne, Y. Kaneko, J.-P. Ampuero, C. Ji, N. Ruppert, K. Smith, and M.E. West (2018). Earthquake nucleation and fault slip complexity in the lower crust of central Alaska. Nature Geoscience, 11, 536-541, doi:10.1038/s41561-018-0144-2. [pdf]
  30. McGuire, J.J., and Y. Kaneko (2018). Directly estimating earthquake rupture area using second moments to reduce the uncertainty in stress drop. Geophysical Journal International, 214(3), 2224–2235, doi:10.1093/gji/ggy201. [pdf]
  31. Kubota, T., T. Saito, Y. Ito, Y. Kaneko, L.M. Wallace, S. Suzuki, R. Hino, and S.A. Henrys (2018). Using tsunami waves reflected at the coast to improve offshore earthquake source parameters: Application to the 2016 Mw 7.1 Te Araroa earthquake, New Zealand. Journal of Geophysical Research, 123(10), 8767-8779, doi:10.1029/2018JB01583. [pdf]
  32. Ando, R., and Y. Kaneko (2018). Dynamic rupture simulation reproduces spontaneous multi-fault rupture and arrest during the 2016 Mw 7.9 Kaikoura earthquake. Geophysical Research Letters, 45(23), doi:10.1029/2018GL080550. [pdf]
  33. Goto, H., Y. Kaneko, J. Young, H. Avery, and L. Damiano (2019). Extreme accelerations during earthquakes caused by elastic flapping effect. Scientific Reports, 9(1), 1117, doi:10.1038/s41598-018-37716-y. [pdf]
  34. *Kearse, J., Y. Kaneko, T. Little, and R.J. Van Dissen (2019). Curved slickenlines preserve direction of rupture propagation. Geology, 47 (9): 838–842, doi:10.1130/G46563.1. [pdf]
  35. Kaneko, Y., Y. Ito, B. Chow, L.M. Wallace, C. Tape, R. Grapenthin, E. D'Anastasio, R. Hino, and S. Henrys (2019). Ultra-long duration of seismic ground motion arising from a thick, low-velocity sedimentary wedge. Journal of Geophysical Research, 124(10), 1–13, doi:10.1029/2019JB017795. [pdf]
  36. Shibazaki, B., L.M. Wallace, Y. Kaneko, I. Hamling, Y. Ito, and T. Matsuzawa (2019). Three-dimensional modeling of spontaneous and triggered slow-slip events at the Hikurangi subduction zone, New Zealand. Journal of Geophysical Research, 124, doi:10.1029/2019JB018190. [pdf]
  37. *Katakami, S., Y. Kaneko, Y. Ito, and E. Araki (2020). Stress sensitivity of instantaneous dynamic triggering of shallow slow slip events. Journal of Geophysical Research, 125, doi:10.1029/2019JB019178. [pdf]
  38. Ito, Y., S.C. Webb, Y. Kaneko, L. M. Wallace, and R. Hino (2020), Sea surface gravity waves excited by dynamic ground motions from large regional earthquakes. Seismological Research Letters, doi:10.1785/0220190267. [pdf]
  39. Pritchard, M.E., R.M. Allen, T.W. Becker, M.D. Behn, E.E. Brodsky, R. Bürgmann, C. Ebinger, J.T. Freymueller, M. Gerstenberger, B. Haines, Y. Kaneko, S. D. Jacobsen, N. Lindsey, J.J. McGuire, M. Page, S. Ruiz, M. Tolstoy, L. Wallace, W.R. Walter, W. Wilcock, and H. Vincent (2020). New Opportunities to Study Earthquake Precursors. Seismological Research Letters, doi:10.1785/0220200089. [pdf]
  40. Gusman, A.R., Y. Kaneko, W. Power, and D. Burbidge (2020). Source process for two enigmatic repeating vertical‐T CLVD tsunami earthquakes in the Kermadec Ridge. Geophysical Research Letters, 47, doi:10.1029/2020GL087805. [pdf]
  41. *Thakur, P., Y. Huang, and Y. Kaneko (2020). Effects of low‐velocity fault damage zones on long‐term earthquake behaviors on mature strike‐slip faults. Journal of Geophysical Research, 125, doi:10.1029/2020JB019587. [pdf]
  42. *Chow, B., Y. Kaneko, C. Tape, R. Modrak, and J. Townend (2020). An automated workflow for adjoint tomography - Waveform misfits and synthetic inversions for the North Island, New Zealand, Geophysical Journal International, doi:10.1093/gji/ggaa381. [pdf]
  43. *Kearse, J., and Y. Kaneko  (2020). On-fault geological fingerprint of earthquake rupture direction, Journal of Geophysical Research, 125, doi:10.1029/2020JB019863. [pdf] [Related news article]
  44. *Yao, D., Z. Peng, Y. Kaneko, B. Fry, and X. Meng (2021). Dynamic triggering of earthquakes in the North Island of New Zealand following the 2016 Mw 7.8 Kaikōura earthquake. Earth and Planetary Science Letters, doi:10.1016/j.epsl.2020.116723. [pdf]
  45. Goto, H., Y. Kaneko, M. Naguit, and J. Young (2021). Records of extreme ground accelerations during the 2011 Christchurch earthquake sequence contaminated by a nonlinear, soil–structure interaction. Bulletin of the Seismological Society of America, doi:10.1785/0120200337. [pdf]
  46. Howarth, J.D., A.R. Orpin, Y. Kaneko, et al. (2021). Calibrating the marine turbidite palaeoseismometer using the 2016 Kaikōura earthquake. Nature Geoscience, doi:10.1038/s41561-021-00692-6. [pdf]
  47. *Macklin, C., Y. Kaneko, and J. Kearse (2021). Coseismic slickenlines record the emergence of multiple rupture fronts during a surface-breaking earthquake. Tectonophysics, doi:10.1016/j.tecto.2021.228834. [pdf]
  48. *Inchin, P., J. Snively, Y. Kaneko, M. Zettergren, and A. Komjathy (2021). Inferring the evolution of a large earthquake from its acoustic impacts on the ionosphere. AGU Advances, doi:10.1029/2020AV000260.  [pdf] [Editor's Highlight]
  49. *Perez-Silva, A., D. Li, A.-A., Gabriel, and Y. Kaneko (2021). 3D modeling of long-term slow slip events along the flat-slab segment in the Guerrero Seismic Gap, Mexico. Geophysical Research Letters, 48, e2021GL092968, doi:10.1029/2021GL092968. [pdf]
  50. *Chow, B., Y. Kaneko, C. Tape, R. Modrak, N. Mortimer, S. Bannister, and J. Townend (2022). Strong upper-plate heterogeneity at the Hikurangi subduction margin (North Island, New Zealand) imaged by adjoint tomography. Journal of Geophysical Research, doi:10.1029/2021JB022865. [pdf
  51. *Chow, B., Y. Kaneko, and J. Townend (2022). Evidence for deeply-subducted lower-plate seamounts at the Hikurangi subduction margin: implications for seismic and aseismic behavior. Journal of Geophysical Research, doi:10.1029/2021JB022866. [pdf][Editor’s Highlight]
  52. *Perez-Silva, A., Y. Kaneko, M. Savage, L. Wallace, D. Li, and C. Williams (2022). Segmentation of shallow slow slip events at the Hikurangi subduction zone explained by along-strike changes in the fault geometry and plate convergence rates. Journal of Geophysical Research, doi:10.1029/2021JB022913. [pdf]
  53. Inchin, P., J.A. Guerrero, J. Snively, and Y. Kaneko (2022). Simulation of infrasonic acoustic wave imprints on airglow layers during the 2016 M7.8 Kaikoura earthquake. Journal of Geophysical Research - Space Physics, doi:10.1029/2021JA029529.  [pdf]
  54. Carey, J.M., J.J. Mountjoy, G.J. Crutchley, D.N. Petley, C.F. Holden, Y. Kaneko, and K. Huhn (2022). Episodic movement of a submarine landslide complex driven by dynamic loading during earthquakes, Geomorphology, doi:10.1016/j.geomorph.2022.108247. [pdf]
  55. Kaneko, Y., and H. Goto (2022). The origin of large, long-period near-fault ground velocities during surface-breaking strike-slip earthquakes, Geophysical Research Letters, 49, e2022GL098029, doi:10.1029/2022GL098029. [pdf]
  56. Gusman, A.R., J. Roger, W. Power, B. Fry, and Y. Kaneko (2022). The 2021 Loyalty Islands earthquake (Mw 7.7): Tsunami waveform inversion and implications for tsunami forecasting for New Zealand. Earth and Space Science, doi:10.1029/2022EA002346. [pdf]
  57. Erickson, B., et al (2023). Incorporating full elastodynamic effects and dipping fault geometries in community code verification exercises for simulations of earthquake sequences and aseismic slip (SEAS), Bulletin of the Seismological Society of America, doi:10.1785/0120220066. [pdf]
  58. Gerstenberger, M., et al (2023). A time-dependent seismic hazard model following the Kaikōura M7.8 earthquake. New Zealand Journal of Geology and Geophysics, doi:10.1080/00288306.2022.2158881. [pdf]
  59. *Aoki, T., Y. Kaneko, J. Kearse (2023). Dynamic simulations of coseismic slickenlines on non-planar and rough faults. Geophysical Journal International, 233(2), 1124–1143, doi:10.1093/gji/ggac501. [pdf]
  60. *Perez-Silva, A., Y. Kaneko, M. Savage, L. Wallace, and E. Warren-Smith (2023). Characteristics of slow slip events explained by rate-strengthening faults subject to periodic pore fluid pressure changes, Journal of Geophysical Research, doi:10.1029/2022JB026332. [pdf]
  61. *Ito, R., and Y. Kaneko (2023). Physical mechanism for a temporal decrease of the Gutenberg-Richter b-value prior to a large earthquake, Journal of Geophysical Research,128, e2023JB027413, doi:10.1029/2023JB027413. [pdf]
  62. *Norisugi, R., Y. Kaneko, and B. Rouet-Leduc (2024). Machine learning predicts earthquakes in the continuum model of a rate-and-state fault with frictional heterogeneities. Geophysical Research Letters, 51, e2024GL108655, doi:10.1029/2024GL108655. [pdf]
  63. *Nozuka, Y., P.A. Inchin, Y. Kaneko, R. Sabatini, and J.B. Snively (2024), Earthquake source impacts on the generation and propagation of seismic infrasound to the upper atmosphere, Geophysical Journal International, ggae170, doi:10.1093/gji/ggae170. [pdf]


(* indicates student lead author)
Movie_EarthquakeCycle_3D.mp4

3D earthquake cycle simulations where shear slip instability (seismic events) spontaneously emerges.

Kumamoto_Earthquake_Simulation.mp4

Seismic wavefield and dynamic rupture simulation of the 2016 Kumamoto earthquake.

Outreach video showing ground motion simulation of a potential Hikurangi megathrust earthquake.
Outreach video showing seismic wave propagation simulation of the 2016 M7.8 Kaikoura earthquake. The comparison of simulated and observed (data) seismograms can be found in Holden et al (2017).