Publications

Selected Publications

Jang et al., 2024. Tofacitinib uptake by patient-derived intestinal organoids predicts individual clinical responsiveness. Gastroenterology

Jang et al., 2023. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host & Microbe

Lin, Gaudino, Jang et al., 2022. IL-17RA-signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity

Jang et al., 2022. Variable susceptibility of intestinal organoid-derived monolayers to SARS-CoV-2 infection. PLoS Biology

Jang KK#, D Hudesman, DR Jones, P Loke, J Axelrad#, K Cadwell#, and Tofacitinib Working Group. 2024. Tofacitinib uptake by patient-derived intestinal organoids predicts individual clinical responsiveness. Gastroenterology. 167:1453-1456 (#Co-corresponding authors) [Link]


Dallari S, V Martinez Pazos, J Munoz Eusse, J Wellens C Thompson, J Colombel, J Satsangi, K Cadell, SY Wong, and ICARUS-IBD Working Group. 2023. Cytokine signature in convalescent SARS-CoV-2 patients with inflammatory bowel disease receiving vedolizumab. Scientific Reports. 14:186 [Link]


Jang KK, H Thomas, M London, Y Ding, G Putzel, F Yeung, D Ercelen, YH Chen, J Axelrad, S Gurunathan, M Podkowik, N Arguelles, A Srivastava, B Shopsin,VJ Torres, M Keestra-Gounder, A Pironti, M Griffin, H Hang, and K Cadwell. 2023. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host & Microbe. 31:1-19 [Link]


Wong SY, J Wellens, D Helmus, L Marlow, S Brann, V Martinez Pazos, A Weinberg, HR Moran, S Vermeire, K Watanabe, K Kamikozuru, V Ahuja, S Vermani, JO Lindsay, A Kingston, U Dutta, H Kaur, MS Silverberg, R Milgrom, SC Ng, JWY Mak, K Cadwell, C Thompson, JF Colombel, J Satsangi, and ICARUS-IBD Consortium. 2023. Geography influences susceptibility to SARS-CoV-2 serological response in patients with inflammatory bowel disease: multinational analysis from ICARUS-IBD Consortium. Inflammatory Bowel Disease. 29:1693-1705 [Link]


Jang KK, M Kaczmarek, D Simone, YH Chen, T Tada, J Axelrad, NR Landau, K Stapleford, and K Cadwell. 2022. Variable susceptibility of intestinal organoid-derived monolayers to SARS-CoV-2 infection. PLoS Biology. 20:e3001592 [Link]


Lin X*, Gaudino SJ*, Jang KK*, T Bahadur, A Singh, A Banerjee, M Beaupre, T Chu, HT Wong, C-K Chang, C Kempen, J Axelrad, H Huang, S Khalid, V Shah, O Eskiocak, OB Parks, A Berisha, JP McAleer, M Good, M Hoshino, R Blumberg, AB Bialkowska, S Gaffen, JK Kolls, S Beyaz, K Cadwell, and P Kumar. 2022. IL-17RA signaling in Lgr5+ intestinal stem cells induces expression of transcription factor ATOH1 to promote secretory cell lineage commitment. Immunity. 55:1-17 (*Co-first authors) [Link]


Rodriguez-Rodriguez BA, Noval MG, Kaczmarek ME, KK Jang, SA Thannickal, AC Kottkamp, RS Brown, M Kielian, K Cadwell, and K Stapleford. 2021. Atovaquone and berberine chloride inhibit SARS-CoV-2 replication in vitro. Viruses. 13:2437 [Link]


Wong SY, R Dixon, V Barcessat, K Tuballes, N Herrera, ICARUS-IBD Working Group, S Gnatic, JF Colombel, K Cadwell. 2021. Serological response to messenger RNA coronavirus disease 2019 vaccines in inflammatory bowel disease patients receiving biologic therapies. Gastroenterology. 161:715-718e4  [Link]


Miller BM, MJ Liou, LF Zhang, H Nguyen, Y Litvak, E-M Schorr, KK Jang, C Tiffany, B Butler, and AJ Bäumler. 2020. Anaerobic respiration of NOX1-derived hydrogen peroxide licenses bacterial growth at the colonic surface. Cell Host & Microbe. 28:789-797 [Link]


Lee ZW, SH Hwang, G Choi, KK Jang, TH Lee, KM Chung, BS Kim, and SH Choi. 2020. A MARTX toxin rtxA gene is controlled by host environmental signals through a CRP-coordinated regulatory network in Vibrio vulnificus. mBio. 11:e00723-20 [Link]


Choi GR*, Jang KK*, JG Lim, ZW Lee, and SH Choi. 2020. The transcriptional regulator IscR integrates host-derived nitrosative stress an iron starvation in the activation of the vvhBA operon in Vibrio vulnificus. Journal of Biological Chemistry. 295:5350-5361 (*Co-first authors) [Link]


Lee ZW, BS Kim, KK Jang, YJ Bang, S Kim, NC Ha, YH Jung, HJ Lee, HJ Han, JS Kim, J Kim, PK Sahu, LS Jeong, MH Kim, and SH Choi. 2019. Small-molecule inhibitor of HlyU attenuates virulence of Vibrio species. Scientific Reports. 9:4346 [Link]


Lee A, MS Kim, D Cho, KK Jang, SH Choi, and TS Kim. 2018. Vibrio vulnificus RtxA is a major factor driving inflammatory T helper type 17 cell responses in vitro and in vivo. Frontiers in Immunology. 9:2095 [Link]


 Kim BS, Jang SY, YJ Bang, J Hwang, Y Koo, KK Jang, D Lim, MH Kim, and SH Choi. 2018. Qstatin, a selective inhibitor of quorum sensing master regulator in Vibrio species. mBio. 9:e02262-17 [Link]


Ahn JS, KK Jang, I Jo, H Nurhsni, JG Lim, JW Yoo, SH Choi, and NC Ha. 2018. Crystal structure of peroxiredoxin 3 from Vibrio vulnificus and its implications for scavenging peroxides and nitric oxide. IUCrJ. 5:82-92 [Link]


Lee A, HX Lim, MS Kim, D Cho, KK Jang, SH Choi, and TS Kim. 2017. Vibrio vulnificus infection induces the maturation and activation of dendritic cells with inflammatory Th17-polarizing ability. International Journal of Molecular Medicine. 41:531-540 [Link]


Jang KK, ZW Lee, B Kim, YH Jung, MH Kim, HJ Han, BS Kim, and SH Choi. 2017. Identification and characterization of Vibrio vulnificus plpA gene encoding phospholipase A2 essential for pathogenesis. Journal of Biological Chemistry. 292:17129-17143 [Link]


Lee SJ, YH Jung, JS Kim, HJ Lee, SH Lee, KH Lee, KK Jang, SH Choi, and HJ Han. 2017. A Vibrio vulnificus VvpM induces IL-1β production coupled with necrotic macrophage death via distinct spatial targeting by ANXA2. Frontiers in Cellular and Infection Microbiology. 7:352 [Link]


Park NR, S Song, G Choi, KK Jang, I Jo, SH Choi, and NC Ha. 2017. Crystal structure of the regulatory domain of AphB from Vibrio vulnificus, a virulence gene regulator. Molecules and Cells. 40:299-306 [Link]


Song EJ, SJ Lee, HS Lim, JS Kim, KK Jang, SH Choi, and HJ Han. 2016. Vibrio vulnificus VvhA induces autophagy-related cell death through the lipid raft-dependent c-Src/NOX signaling pathway. Scientific Reports. 6:27080 [Link]


Jang KK, SY Gil, JG Lim, and SH Choi. 2016. Regulatory characteristics of Vibrio vulnificus gbpA gene encoding mucin-binding protein essential for pathogenesis. Journal of Biological Chemistry. 291:5774-5787 [Link]


Lee SJ, YH Jung, JM Ryu, KK Jang, SH Choi, and HJ Han. 2015. VvpE mediates the intestinal colonization of Vibrio vulnificus by the disruption of tight junctions. International Journal of Medical Microbiology. 306:10-19 [Link]


Lee SJ, YH Jung, EJ Song, KK Jang, SH Choi, and HJ Han. 2015. Vibrio vulnificus VvpE stimulates IL-1β production by the hypomethylation of the IL-1β promoter and NFκB activation via lipid-raft-dependent ANXA2 recruitment and reactive oxygen species signaling in intestinal epithelial cells. Journal of Immunology. 195:2282-2293 [Link]


Lee SJ, YH Jung, SY Oh, KK Jang, HS Lee, SH Choi, and HJ Han. 2015. Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells. Cell Death & Disease. 6:e1787 [Link]


Han GY, YH Jung, KK Jang, SH Choi, and SJ Lee. 2014. Vibrio vulnificus induces the inflammation of mouse ileal epithelium: Involvement of protein kinase C and nuclear factor-kappa B. Journal of Life Science. 24:664-670 [Link]