User centered BCI for motor rehabilitation, based on low-cost devices, adaptive machine learning models, neurofeedback and operant conditioning.
We design machine learning models to speed-up calibration time between session and between users. We design and evaluate different stimulating protocols to improve user engagement. We study the cognitive and attentional states to understand their impact in user BCI controlling capability.
The ultimate goal is to validate coAR.BCI as a neurotechnology for post-straoke rehabilitation
Peterson, V., Spagnolo, V., Galván, C. M., Nieto, N., Spies, R., & Milone, D. H. (2025). Towards subject-centered co-adaptive brain-computer interfaces based on backward optimal transport. Journal of Neural Engineering. doi: 10.1088/1741-2552/addb7a
Galván, C. M., Spies, R. D., Milone, D. H., & Peterson, V. (2024). Neurophysiologically meaningful motor imagery EEG simulation with applications to data augmentation. IEEE Trans. Neural Syst. Rehabil. Eng, 32, 2346-2355. doi: https://doi.org/10.1109/tnsre.2024.3417311
Peterson, V., Nieto, N., Wyser, D., Lambercy, O., Gassert, R., Milone, D. H., & Spies, R. D. (2021). Transfer learning based on optimal transport for motor imagery brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 69(2), 807-817. doi: 10.1109/TBME.2021.3105912
Peterson, V., Galván, C., Hernández, H., & Spies, R. (2020). A feasibility study of a complete low-cost consumer-grade brain-computer interface system. Heliyon, 6(3), e0342. doi: https://doi.org/10.1016/j.heliyon.2020.e03425
Peterson, V., Galván, C., Hernández, H., & Spies, R. (2022). A motor imagery vs. rest dataset with low-cost consumer grade EEG hardware. Data in Brief, 6, 108225. doi: https://doi.org/10.1016/j.dib.2022.108225
Motor Imagery vs Rest - Low-Cost EEG System @OpenNeuro | GitHub Repo
Backward Optimal Transport for Domain Adaptation (BOTDA) Python Implementation: GitHub repo
Supportive Backward Adaptation (SBA) Python Implementation: GitHub repo