Development of intelligent adaptive deep brain stimulation devices for Parkinson's Disease.
Merk, T., Peterson, V., Lipski, W. J., Blankertz, B., Turner, R. S., Li, N., ... & Neumann, W. J. (2022). Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. Elife, 11, e75126. doi: https://doi.org/10.7554/eLife.75126
Peterson, V., Merk, T., Bush, A., Nikulin, V., Kühn, A. A., Neumann, W. J., & Richardson, M. (2022). Movement decoding using spatio-spectral features of cortical and subcortical local field potentials. Experimental Neurology, 114261. doi: https://doi.org/10.1016/j.expneurol.2022.114261
Merk, T., Peterson, V., Köhler, R., Haufe, S., Richardson, R. M., & Neumann, W. J. (2022). Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Experimental Neurology, 113993. doi: https://doi.org/10.1016/j.expneurol.2022.113993
CRCNS: US-GERMAN RESEARCH PROPOSAL: Deep Neural Network Approaches for Closed-Loop Deep Brain Stimulation Using Cortical and Subcortical Sensing
Principal Investigators: R. Mark Richardson, MD, PhD, Neurosurgery Faculty, Harvard Medical School and Robert S. Turner, PhD, Department of Neurobiology, University of Pittsburgh; Wolf-Julian Neumann, MD, and Andrea A. Kühn, MD, Department of Neurology, Charité-Universitätsmedizin Berlin.
Participation: Postdoc