Motor decoding from invasive neuromodulations

Development of intelligent adaptive deep brain stimulation devices for Parkinson's Disease. 

Publications

Merk, T., Peterson, V., Lipski, W. J., Blankertz, B., Turner, R. S., Li, N., ... & Neumann, W. J. (2022). Electrocorticography is superior to subthalamic local field potentials for movement decoding in Parkinson’s disease. Elife, 11, e75126. doi: https://doi.org/10.7554/eLife.75126

Peterson, V., Merk, T., Bush, A., Nikulin, V., Kühn, A. A., Neumann, W. J., & Richardson, M. (2022). Movement decoding using spatio-spectral features of cortical and subcortical local field potentials. Experimental Neurology, 114261. doi: https://doi.org/10.1016/j.expneurol.2022.114261

Merk, T., Peterson, V., Köhler, R., Haufe, S., Richardson, R. M., & Neumann, W. J. (2022). Machine learning based brain signal decoding for intelligent adaptive deep brain stimulation. Experimental Neurology, 113993. doi: https://doi.org/10.1016/j.expneurol.2022.113993 

Funding

CRCNS: US-GERMAN RESEARCH PROPOSAL: Deep Neural Network Approaches for Closed-Loop Deep Brain Stimulation Using Cortical and Subcortical Sensing

Principal Investigators: R. Mark Richardson, MD, PhD, Neurosurgery Faculty, Harvard Medical School and Robert S. Turner, PhD, Department of Neurobiology, University of Pittsburgh; Wolf-Julian Neumann, MD, and Andrea A. Kühn, MD, Department of Neurology, Charité-Universitätsmedizin Berlin.

Participation: Postdoc