Search this site
Embedded Files
Traveling brain waves
  • TBW
  • braintw.org
Traveling brain waves
  • TBW
  • braintw.org
  • More
    • TBW
    • braintw.org

TRAVELLING BRAIN WAVES

© TBW 2022                 Use content only by author's permission braintravelingwaves@gmail.com

Experimental Verifications of the Interaction of Traveling Waves with the Functional Microstructure of Orientation Columns in the Human Visual Cortex Based on EEG and MEG Data

The reported study was funded by RFBR, project number 20-015-00475

Fig. 1 Contrast gratings used for visual stimulation during registration of 128-channel EEG. A) 90º B) 0º C) 45º D) 135º


Fig.2  When registering the MEG, we used visual stimuli in the form of Gabor contrast gratings (1.9 cycles per angular degree) with dimensions of 5.25 angular degrees and an average brightness of 4 lux, which were projected onto a screen located at a distance of 95 cm from the subject's eyes for 100 ms. and were presented randomly every 3000 ± 100 ms (intervals between stimuli changed randomly). Two randomized sequences of 42 stimuli in each orientation were used. Between the series, the subject rested for 2-3 minutes.

Fig. 3 MEG registration at the «Neuromag Vector View» (Elekta Oy, Finland) installation (306 channels). A proection screen is visible in the forgraund.

Fig. 4 Evoked potentials. Components P100 (50-120 ms), N170 (100-200 ms) and P300 (250-400 ms of the 128 channel EEG upon presentation of contrast grids (90º, 0º, 45º, 135º).

Fig. 5  A scheme of the location of the electrodes on the head during the registration of the 128-channel EEG. Orange shaded are the electrodes on which statistically significant differences in EP were found. REF (Cz) - reference electrode, NAS - electrode located on the bridge of the nose (nasion).

Fig. 6 Average visual evoked potentials for the entire group of subjects (left hemisphere, E 65). When presented with a stimulus: 90°, 0°, 135°, 45°; * - significant differences in P100 amplitude between orientations lattice slopes (p<0.05); *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.005)

Fig. 7 Averaged visual evoked potentials for the entire group of subjects (right hemisphere, E 84). On stimulus presentation: 90°, 0°, 135°, 45°. * - significant differences in the P100 amplitude between the orientations of the grating slopes (p <0.05); ** - significant differences in the N170 amplitude between the orientations of the grating slopes (p <0.05); *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.05).

Fig 8 Average visual EPs of subject 1 (right hemisphere - E 90, left hemisphere - E 59). When presented with a stimulus: 90°, 0°, 135°, 45°. * - significant differences in the P100 amplitude between the orientations of the grating slopes (p <0.05); ** - significant differences in the N170 amplitude between the orientations of the grating slopes (p <0.05); *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.05).

Fig 9 Average visual EPs of subject 2 (right hemisphere - electrode E 89, left hemisphere - E 64 and E 69). When presented with a stimulus: 90°, 0°, 135°, 45°; ' significant differences in the P50 amplitude between the orientations of the grating slopes (p < 0.05); * - significant differences in the P100 amplitude between the orientations of the grating slopes (p <0.05); ** - significant differences in the N170 amplitude between the orientations of the grating slopes (p <0.05); *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.05).

Fig.10 Average visual evoked potentials of subject 4 (left hemisphere, E 65). On stimulus presentation: 90°, 0°, 135°, 45°; * - significant differences in the P100 amplitude between the orientations of the grating slopes (p < 0.05). ** - significant differences in the N170 amplitude between the orientations of the grating slopes (p <0.05). *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.05).

Fig. 11 Average visual evoked potentials of subject 4 (right hemisphere, E 90). On stimulus presentation: 90°, 0°, 135°, 45°; * - significant differences in the P100 amplitude between the orientations of the grating slopes (p < 0.05). ** - significant differences in the N170 amplitude between the orientations of the grating slopes (p <0.05). *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.05).

Fig. 12 Average visual evoked potentials of subject 5 (right hemisphere, E 82, E 91). When presented with a stimulus: 90°, 0°, 135°, 45°; * - significant differences in the P100 amplitude between the orientations of the grating slopes (p <0.05); ** - significant differences in the N170 amplitude between the orientations of the grating slopes (p <0.05); *** - Significant differences in P300 amplitude between lattice tilt orientations (p < 0.05). In the region of the P50 and P100 components, the phase differences of oscillations depending on the stimulus are clearly visible.

Fig. 13 Average visual evoked potentials of subject 6 (right hemisphere, E 100). When presented with a stimulus: 90°, 0°, 135°, 45°. In the region of the P100 component, phase differences of oscillations depending on the stimulus are clearly visible.

Fig. 14 Search results for epicenters of traveling waves. a) two-dimensional correlation coefficients for the left hemisphere; b) two-dimensional correlation coefficients for the right hemisphere. The convolutions of the hemispheres are presented in a "smoothed" form to display the epicenters located in the depths of the cerebral cortex. Dark gray spots - projections of fissures. When presented with a stimulus: 90°, 0°, 135°, 45°. Areas of interest: left hemisphere: c) red zone, d) yellow and blue zones (baselines), right hemisphere: e) red zone (90° stimulus); f) red and yellow zones (stimulus 135°).

Fig. 15 Localization and reconstruction of traveling waves of the P100 component along the lower part of the calcarine sulcus. The convolutions of the hemispheres are presented in a "smoothed" form to display the epicenters located in the depths of the cerebral cortex a) model EEG and distribution of current densities from radial waves in the left hemisphere; b) model EEG and distribution of current densities from radial waves in the right hemisphere; The scale at the top right is the current density in pA.m. c) total EEG and electric field distribution on the scalp. The scale units at the bottom right are μV.

Fig. 16 A localization of the evoked MEG component in the calcarine sulcus upon presentation of Gabor gratings 0°, 45°, 90°, 135°.

Fig. 17 Significant differences in the individual statistics of the 100 ms MEG component when comparing stimulation with vertical and oblique gratings (90°/135°) .

Fig. 18 Significant differences in individual statistics of the 100-ms MEG component when comparing stimulation with two oppositely oblique gratings (45°/135°).

Fig. 19 Significant differences in the individual statistics of the 100 ms MEG component when comparing stimulation with   oblique and vertical gratings (45°/90°) .

Fig. 20 Significant differences in the individual statistics of the 100 ms MEG component when comparing stimulation with horizontal and oblique gratings (0°/135°) .

Fig. 21 Significant differences in the individual statistics of the 100 ms MEG component when comparing stimulation with horizontal and vertical gratings (0°/90°) .

Fig. 22 Statistically significant differences in the 100 ms MEG component in subject No. 2.  *p<0.05, **p<0.01.

Fig. 23 Traveling waves of the 100-ms MEG component during stimulation with Gabor gratings 0°, 45°, 90°, 135° (see animation).

Fig. 24 Mental tracking in visual cortex (see animation).

222VideoJ02.mov

Fig. 25 Waves of self-excitation of the cortical nervous tissue

Fig. 26 Autogeneration with alpha rhythm frequency

Fig. 27 A simulation of interaction of orientational-column microstructure with a traveling wave (see animation). 

22simPinwheels.mov

Fig. 28 3D surface of head and electrode positions in MNI space for 128 channel EEG system.

Fig. 29 Triangulated cortical model of the brain and its membranes for solving the direct problem of EEG and MEG using the boundary element method (BEM)

Fig. 30 Method of correlation masks. The mean value of the correlation weights was compared by ANOVA.

Fig. 31 Effects of the wave profile on the MEG .The upper part is the neural field. The lower part is the sine equation.

MEG3DSigSinMS.mov

References

Goal and tasks:

[1] Bressloff PC, Cowan JD. An amplitude equation approach to contextual effects in visual cortex. Neural Comput. 2002;14(3):493-525. doi:10.1162/089976602317250870

[2] Bressloff PC. Spatiotemporal dynamics of continuum neural fields. J Phys A Math Theor. 2012;45(3):033001. doi:10.1088/1751- 8113/45/3/033001

[3] Bressloff PC, Carroll SR. Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity. PLoS Comput Biol. 2015;11(10):1004545. doi:10.1371/journal.pcbi.1004545

Results:

[1] Verkhlyutov V., Sokolov P., Mnatsakanian E. EEG (128 ch) on presentation of cardinal and oblique grids. ZENODO. 2022. https://doi.org/10.5281/zenodo.7496795

[2] Verkhlyutov V., MEG data during the presentation of Gabor patterns and word sets. ZENODO. 2022. https://doi.org/10.5281/zenodo.7458233

[3] Mikhailova ES, Gerasimenko NY, Krylova MA, Izyurov IV., Slavutskaya AV. The Mechanisms of Orientation Sensitivity of Human Vision System. Part II: Neural Patterns of Early Processing of Information about Line Orientation. Fiziol Cheloveka. 2015;41(3):5- 18. https://doi.org/10.7868/s013116461503011x

[4] Verkhlyutov V, Sharaev M, Balaev V, et al. Towards localization of radial traveling waves in the evoked and spontaneous MEG: A solution based on the intra-cortical propagation hypothesis propagation hypothesis. Procedia Comput Sci 145 617-622. 2018;145:617–622.  doi:10.1016/j.procs.2018.11.073

[5] Верхлютов В. М., Бурлаков Е.О. Ментальный трекинг в зрительной коре в состоянии покоя // Когнитивная наука в Москве: Новые исследования. Материалы конференции 23–24 июня 2021. Под ред. Е.В. Печенковой, М.В. Фаликман, А.Я. Койфман. – М.: ООО «Буки Веди», ИППиП. – 2021. – С.96–101.

[6] Verkhlyutov V, Burlakov E, Ushakov V. Comparison of Simulated Macro- and Mesoscopic Cortical Traveling Waves with MEG Data. Adv Intell Syst Comput. 2021;1358:700-708. doi:10.1007/978-3-030- 71637-0_81

[7] Kozhukhov SA, Ivanov RS, Bugrova VS, Verkhlyutov VM, Ushakov VL. Functional asymmetry of local connections in V1 and its impact on orientation tuning. Procedia Comput Sci. 2020;169. doi:10.1016/j.procs.2020.02.201

[8] Wilson H.R., Cowan J.D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972; 12:1–23. doi: 10.1016/S0006- 3495(72)86068-5, PMID: 4332108

[9] Wilson H.R., Cowan J.D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973; 13:55–80. doi: 10.1007/BF00288786, PMID: 4767470

[10] Amari S. Dynamics of pattern formation in lateral inhibition type neural fields. Biol Cybern. 1977; 27:77– 87. doi: 10.1007/BF00337259 PMID: 911931

[11] Burlakov E, Zhukovskiy E, Verkhlyutov V. Neural field equations with neuron‐dependent Heaviside‐type activation function and spatial‐ dependent delay. Math Methods Appl Sci. 2020. doi:10.1002/mma.6661

[12] Verkhlyutov V, Burlakov E. MEG simulations using local propagation of traveling waves calculated using neural field equations. ZENODO. 2023. doi:https://doi.org/10.5281/zenodo.7520054

[13] Burlakov E, Verkhlyutov V, Ushakov V. A Simple Human Brain Model Reproducing Evoked MEG Based on Neural Field Theory. Stud Comput Intell. 2022;1008:109-116. doi:10.1007/978-3-030-91581-0_15

[14] Neklyudova AK, Portnova G V., Rebreikina AB, et al. 40-Hz Auditory Steady-State Response (ASSR) as a Biomarker of Genetic Defects in the SHANK3 Gene: A Case Report of 15-Year-Old Girl with a Rare Partial SHANK3 Duplication. Int J Mol Sci. 2021;22(4):1898. doi:10.3390/ijms22041898.

[15] Бурлаков Е.О., Верхлютов В. М., Панфилова Е. А. Связь бегущих волн с коннектомом. Интегративная физиология: Всероссийская конференция с международным участием, Сакт-Петербург (8-10 декабря 2021 г.) Тезисы докладов. – СПб.: Ин-т физиологии им. И.П. Павлова РАН, 151. https://ihna.ru/files/member/verkhlyutov/poster/Sbornik_thesys_Integr- Phys- 2021.pdf

[16] Panfilova E.A., Burlakov E.O., Verkhlyutov V.M. Traveling waves in the resting state are initiated by the connectome. Frontiers Event Abstract 6th HBP Student Conference on Interdisciplinary Brain Research. 2022. 56-59. doi:10.3389/978-2-88971-014-0.

[17] Чижов А.В., Верхлютов В.М., Смирнова Е.Ю., Амахин Д.В. Волновое распространение преиктальных разрядов. НЕЙРОИНФОРМАТИКА-2016 сборник научных трудов. 2016:93-100.

[18] Chizhov A V., Amakhin D V., Zaitsev A V. Spatial propagation of interictal discharges along the cortex. Biochem Biophys Res Commun. 2019;508(4):1245-1251. doi:10.1016/j.bbrc.2018.12.070

[19] Verkhlyutov V., Burlakov E., MEG simulations using local propagation of traveling waves calculated using neural field equations. ZENODO. 2023. https://doi.org/10.5281/zenodo.7548183

Review:

[1] Campbell F.W. The effect of orientation on the visual resolution of gratings / Campbell F.W., Kulikowski J.J., Levinson J. // The Journal of Physiology – 1966. – Т. 187 – No 2 – С.427–436.

[2] Orban G.A. Human orientation discrimination tested with long stimuli / Orban G.A., Vandenbussche E., Vogels R. // Vision Research – 1984. – Т. 24 – No 2 – С.121–128.

[3] Heeley D.W. Meridional anisotropies of orientation discrimination for sine wave gratings / Heeley D.W., Timney B. // Vision Research – 1988.– Т. 28 – No 2 – С.337–344.

[4] Mansfield R.J.W. Neural Basis of Orientation Perception in Primate Vision / Mansfield R.J.W. // Science – 1974. – Т. 186 – No 4169 – С.1133–1135.

[5] Valois R.L. De The orientation and direction selectivity of cells in macaque visual cortex / Valois R.L. De, William Yund E., Hepler N. // Vision Research – 1982. – Т. 22 – No 5 – С.531–544.

[6] Maffei L. Neurophysiological Localization of the Vertical and Horizontal Visual Coordinates in Man / Maffei L., Campbell F.W. // Science – 1970. – Т. 167 – No 3917 – С.386–387.

[7] Furmanski C.S. An oblique effect in human primary visual cortex / Furmanski C.S., Engel S.A. // Nature Neuroscience – 2000. – Т. 3 – No 6 – С.535–536.

[8] Sharon D. Dynamics and Constancy in Cortical Spatiotemporal Patterns of Orientation Processing / Sharon D., Grinvald A. // Science – 2002. – Т. 295 – No 5554 – С.512–515.

[9] Heitmann S. Direction-selective motion discrimination by traveling waves in visual cortex / Heitmann S., Ermentrout G.B. // PLOS Computational Biology – 2020. – Т. 16 – No 9 – С.e1008164.

[10] Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. Spontaneously emerging cortical representations of visual attributes. Nature. 2003;425(6961):954–956.

[11] Townsend RG, Solomon SS, Chen SC, Pietersen ANJ, Martin PR, Solomon SG, et al. Emergence of Complex Wave Patterns in Primate Cerebral Cortex. J Neurosci. 2015;35(11):4657–4662. pmid:2578868

[12] Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, McVea DA, et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nature Neuroscience. 2013;16(10):1426–1435. pmid:239747088

[13] Muller L, Reynaud A, Chavane F, Destexhe A. The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat Commun. 2014;5.

[14] Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci. 2009;12(1):70–76.

[15] Jancke D, Chavane F, Naaman S, Grinvald A. Imaging cortical correlates of illusion in early visual cortex. Nature. 2004;428(6981):423–426.

[16] Chavane F, Sharon D, Jancke D, Marre O, Frégnac Y, Grinvald A. Lateral Spread of Orientation Selectivity in V1 is Controlled by Intracortical Cooperativity. Front Syst Neurosci. 2011;5.

[17] Zanos T, Mineault P, Nasiotis K, Guitton D, Pack C. A Sensorimotor Role for Traveling Waves in Primate Visual Cortex. Neuron. 2015.

[18] Mikhailova ES, Gerasimenko NY, Krylova MA, Izyurov IV., Slavutskaya AV. The Mechanisms of Orientation Sensitivity of Human Vision System. Part II: Neural Patterns of Early Processing of Information about Line Orientation. Fiziol Cheloveka. 2015;41(3):5-18. https://doi.org/10.7868/s013116461503011x

[19] Li Y. Biased Orientation and Color Tuning of the Human Visual Gamma Rhythm / Li Y., Bosking W., Beauchamp M.S., Sheth S.A., Yoshor D., Bartoli E., Foster B.L. // The Journal of Neuroscience – 2022. – Т. 42 – No 6 – С.1054–1067.

[20] Koelewijn L. Orientation selectivity in primary visual cortex using MEG: an inverse oblique effect? / Koelewijn L., Dumont J.R., Muthukumaraswamy S.D., Rich A.N., Singh K.D. // Journal of Vision – 2010. – Т. 10 – No 7 – С.928–928.

[21] Верхлютов В.М. Модель структуры дипольного источника альфа- ритма зрительной коры человека. Журнал высшей нервной деятельности им. И.П. Павлова. 1996. Т. 46. No 3. С. 496-503.

[22] Chavane F. Revisiting horizontal connectivity rules in V1: from like- to-like towards like-to-all / Chavane F., Perrinet L.U., Rankin J. // Brain Structure and Function – 2022. – Т. 227 – No 4 – С.1279–1295.

[23] Bolt T. A parsimonious description of global functional brain organization in three spatiotemporal patterns / Bolt T., Nomi J.S., Bzdok D., Salas J.A., Chang C., Thomas Yeo B.T., Uddin L.Q., Keilholz S.D. // Nature Neuroscience – 2022. – Т. 25 – No 8 – С.1093–1103.

[24] Кузнецова А. А., Осадчий А. Е. Анализ локальной динамики распространения межприступных рязрядов с помощью модели бегущих волн // Журнал высшей нервной деятельности. — 2022. — т. 72, No 3. — с. 370—386. — DOI: 10.31857/S0044467722030078

[25] González-Ramírez L.R. On the existence of traveling fronts in the fractional-order Amari neural field model / González-Ramírez L.R. // Communications in Nonlinear Science and Numerical Simulation – 2023. – Т. 116 – No 11.

[26] Baker V. Traveling Waves in Quasi-One-Dimensional Neuronal Minicolumns / Baker V., Cruz L. // Neural Computation – 2022. – Т. 34 – No 1 – С.78–103

[27] Byrne Á. Mean-Field Models for EEG/MEG: From Oscillations to Waves / Byrne Á., Ross J., Nicks R., Coombes S. // Brain Topography – 2022. – Т. 35 – No 1 – С.36–53.

[28] Sato N. Cortical traveling waves reflect state-dependent hierarchical sequencing of local regions in the human connectome network / Sato N. // Scientific Reports – 2022. – Т. 12 – No 1 – С.334.

Methods:

[1] https://sites.google.com/view/travellingbrainwaves/tbw 

[2] https://doi.org/10.5281/zenodo.7496795

[3] Shattuck DW and Leahy RM (2002) BrainSuite: An Automated Cortical Surface Identification Tool Medical Image Analysis, 8(2):129- 142.

[4] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: A user-friendly application for MEG/EEG Analysis Comput Intell Neurosci, vol. 2011, ID:879716

[5] OnlineGabor-patchgenerator— http://www.cogsci.nl/gabor-generator

[6] Schade O.H. Optical and Photoelectric Analog of the Eye/SchadeO.H.//Journal of the Optical Society of America (1956),

[7] Verkhlyutov V, Sharaev M, Balaev V, et al. Towards localization of radial traveling waves in the evoked and spontaneous MEG: A solution based on the intra-cortical propagation hypothesis propagation hypothesis. Procedia Comput Sci 145 617-622. 2018;145:617–622. doi:10.1016/j.procs.2018.11.073

[8] Dijkstra, E.W. (1959) “A note on two problems in connection with graphs.”, Numer. Math. 1:269–271.

[9] https://neuroimage.usc.edu/brainstorm/

[10] https://github.com/BrainTravelingWaves

[11] Pantazis D, Fang M, Qin S, Mohsenzadeh Y, Li Q, Cichy RM. Decoding the orientation of contrast edges from MEG evoked and induced responses. bioRxiv. January 2017:148056. doi:10.1101/148056

[12] Roth, Z. N., Heeger, D. J., & Merriam, E. P. (2018). Stimulus vignetting and orientation selectivity in human visual cortex. ELife, 7, e37241.  https://doi.org/10.7554/eLife.37241

YouTube Videos

Vitaly Verkhlyutov, Meg and traveling waves, MEG-centre, Moscow, 2022 (rus)

Vitaly Verkhlyutov, Traveling waves in the prefrontal cortex. part 1 and part 2 (Rus), IHNA&NPh RAS, Moscow, 2022

Nikita Feedosov, Vitaly Verkhlyutov, Localization of traveling waves, (Rus), HSE, IHNA&NPh RAS, Moscow, 2022

Google Sites
Report abuse
Page details
Page updated
Google Sites
Report abuse