submitted
[38] Kjellsson, J., Wahl, S., Bischof, S., Kummer, L., Martin, T., Pilch Kedzierski, R., Zeller, M., Ödalen, M., and Park, W. (...) Reducing Southern Ocean biases in the FOCI climate model, JAMES, submitted, preprint available at ESS open archive, doi:10.22541/essoar.169447339.96217761/v1.
published
[37] Shihora, L., T. Martin, A.C. Hans, R. Hummels, M. Schindelegger, and H. Dobslaw (2025) Relating Atlantic meridional deep-water transport to ocean bottom pressure variations as a target for satellite gravimetry missions, Ocean Sci., 21, 1533–1548, doi:10.5194/os-21-1533-2025.
[36] Schiller-Weiss, I., T. Schulzki, F.U. Schwarzkopf, T. Martin, and A. Biastoch (2025) Sea Surface Height Response to Decadal-scale AMOC Changes in an Eddy-rich Ocean Model, J. Climate, doi:10.1175/JCLI-D-24-0646.1.
[35] Xu, X., T. Martin, R.L. Beadling, J. Liu, S. Bischof, T. Hattermann, W. Huo, Q. Li, J. Marshall, M. Muilwijk, A.G. Pauling, A. Purich, I.J. Smith, N. Swart, and M. Thomas (2025) Robustness and mechanisms of the atmospheric response over the Southern Ocean to idealized freshwater input around Antarctica, Geophys. Res. Lett., 52, e2024GL113734. doi:10.1029/2024GL113734.
[34] Pauling, A.G., I.J. Smith, J.K. Ridley, T. Martin, M. Thomas, and D.P. Stevens (2025) Impacts of Antarctic ice mass loss on New Zealand climate, Geophys. Res. Lett., 52, e2024GL111047. doi:10.1029/2024GL111047.
[33] Beadling, R.L., P. Lin, J. Krasting, W. Ellinger, A. Coomans, J. Milward, K. Turner, X. Xu, T. Martin, and M.J. Molina (2024) From the surface to the stratosphere: large-scale atmospheric response to Antarctic meltwater, Geophys. Res. Lett., 51, e2024GL110157. doi:10.1029/2024GL110157.
[32] Zeller, M. and T. Martin (2024) On warm bias and mesoscale dynamics setting the Southern Ocean large-scale circulation mean state, Ocean Modelling, 191, 102426. doi:10.1016/j.ocemod.2024.102426.
[31] Muilwijk, M., T. Hattermann, T. Martin, and M. Granskog (2024) Future sea ice weakening amplifies wind-driven trends in surface stress and Arctic Ocean spin-up, Nat. Commun. 15, 6889. doi:10.1038/s41467-024-50874-0.
[30] Schiller-Weiss, I., T. Martin, and F.U. Schwarzkopf (2024) Emerging influence of enhanced Greenland melting on boundary currents and deep convection regimes in the Labrador and Irminger Seas, Geophys. Res. Lett., 51, e2024GL109022. doi:10.1029/2024GL109022.
[29] Huo, W., A. Drews, T. Martin, and S. Wahl (2024) Impacts of North Atlantic model biases on natural decadal climate variability, J. Geophys. Res. Atmosphere, 129, e2023JD039778. doi:10.1029/2023JD039778.
[28] Chen, J.-J., N.C. Swart, R. Beadling, X. Cheng,T. Hattermann,A. Jüling, Q. Li, J. Marshall, T. Martin, M. Muilwijk, A.G. Pauling, A. Purich, I.J. Smith, and M. Thomas (2023). Reduced deep convection and bottom water formation due to Antarctic meltwater in a multi-model ensemble, Geophys. Res. Lett., 50, e2023GL106492, doi:10.1029/2023GL106492.
[27] Swart, N.C., T. Martin, R. Beadling, J.-J. Chen, C. Danek, M.H. England, R. Farneti, S.M. Griffies, T. Hattermann, J. Hauck, F.A. Haumann, A. Jüling, Q. Li, J. Marshall, M. Muilwijk, A.G. Pauling, A. Purich, I.J. Smith, and M. Thomas (2023) The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design, Geosci. Model Dev., 16, 7289–7309, doi:10.5194/gmd-16-7289-2023.
[26] Schiller-Weiss, I., T. Martin, J. Karstensen, and A. Biastoch (2023) Do salinity variations along the East Greenland shelf show imprints of increasing meltwater runoff?, J. Geophys. Res. Oceans, 128, e2023JC019890, doi:10.1029/2023JC019890.
[25] Martin, T. and A. Biastoch (2023) On the ocean's response to enhanced Greenland runoff in model experiments: relevance of mesoscale dynamics and atmospheric coupling, Ocean Sci., 19, 141–167, doi:10.5194/os-19-141-2023. (Highlight paper)
[24] Fox, A.D., P. Handmann, C. Schmidt, N. Fraser, S. Rühs, A. Sanchez-Franks, T. Martin, M. Oltmanns, C. Johnson, W. Rath, N.P. Holliday, A. Biastoch, S.A. Cunningham, and I. Yashayaev (2022) Exceptional freshening and cooling in the eastern subpolar North Atlantic caused by reduced Labrador Sea surface heat loss, Ocean Sci., 18, 1507–1533, doi:10.5194/os-18-1507-2022. (Highlight paper)
[23] Großelindemann, H., S. Ryan, C. Ummenhofer, T. Martin, and A. Biastoch (2022) Marine Heatwaves and their Depth Structures on the Northeast U.S. Continental Shelf, Frontiers in Climate, 4:857937, doi:10.3389/fclim.2022.857937.
[22] Martin, T., A. Biastoch, G. Lohmann, U. Mikolajewicz, and X. Wang (2022) On timescales and reversibility of the ocean's response to enhanced Greenland Ice Sheet melting in comprehensive climate models, Geophys. Res. Lett., 49, e2021GL097114, doi:10.1029/2021GL097114.
[21] Biastoch, A., F.U. Schwarzkopf, K. Getzlaff, S. Rühs, T. Martin, M. Scheinert, T. Schulzki, P. Handmann, R. Hummels, and C.W. Böning (2021) Regional Imprints of Changes in the Atlantic Meridional Overturning Circulation in the Eddy-rich Ocean Model VIKING20X, Ocean Sci., 17, 1177–1211, doi:10.5194/os-17-1177-2021.
[20] Rühs, S., E.C.J. Oliver, A. Biastoch, C.W. Böning, M. Dowd, K. Getzlaff, T. Martin, and P.G. Myers (2021) Changing spatial patterns of deep convection in the subpolar North Atlantic, J. Geophys. Res. Oceans, 126, e2021JC017245, doi:10.1029/2021JC017245.
[19] Matthes , K., A. Biastoch, S. Wahl, J. Harlaß, T. Martin, T. Brücher, A. Drews, D. Ehlert, K. Getzlaff, F. Krüger, W. Rath, M. Scheinert, F.U. Schwarzkopf, T. Bayr, H. Schmidt, and W. Park (2020) The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability, Geosci. Model Dev., 13, 2533-2568, doi:10.5194/gmd-13-2533-2020.
[18] Latif, M., T. Martin, A. Reintges, and W. Park (2017) Southern Ocean Decadal Variability and Predictability, Current Climate Change Reports, 3(3), 163-173, doi:10.1007/s40641-017-0068-8. (invited)
[17] Haine, T.W.N.* and T. Martin* (2017) The Arctic-Subarctic sea ice system is entering a seasonal regime: Implications for future Arctic amplification, Scientific Reports, 7, 4618, doi:10.1038/s41598-017-04573-0. (*equal contributions)
[16] Reintges, A., T. Martin, M. Latif, and W. Park (2017) Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model, Geophys. Res. Lett., 44, 6951-6958, doi:10.1002/2017GL074087.
[15] Ungermann, M., L.B. Tremblay, T. Martin, and M. Losch (2017) Impact of the Ice Strength Formulation on the Performance of a Sea Ice Thickness Distribution Model in the Arctic, J. Geophys. Res. Oceans, 122, 2090-2107, doi:10.1002/2016jc012128.
[14] Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016) Southern Ocean deep convection in global climate models: a driver for variability of sub-polar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905-3925, doi: 10.1002/2015JC011286.
[13] Mengis, N., T. Martin, D.P. Keller, and A. Oschlies (2016) Assessing climate impacts and risks of ocean albedo modification in the Arctic, J. Geophys. Res. Oceans, 121, 3044-3057, doi:10.1002/ 2015JC011433.
[12] Martin, T., M. Tsamados, D. Schroeder, and D.L. Feltham (2016) The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study, J. Geophys. Res. Oceans, 121, 1931-1952, doi:10.1002/2015JC011186, contributes to special issue on "Forum for Arctic Modeling and Observing Synthesis (FAMOS): Results and Synthesis of Coordinated Experiments".
[11] Pedro*, J.B., T. Martin*, E.J. Steig, M. Jochum, W. Park, and S.O. Rasmussen (2016) Southern Ocean deep convection as a driver of Antarctic warming events, Geophys. Res. Lett., 43, 2192-2199, doi:10.1002/2016GL067861. (*joint first authors)
[10] Martin, T., W. Park, and M. Latif (2015) Southern Ocean Forcing of the North Atlantic at Multi-centennial Time Scales in the Kiel Climate Model, Deep Sea Res. Part II, Volume 114, 39–48, doi:10.1016/j.dsr2.2014.01.018, contributes to special issue on "Southern Ocean Dynamics and Biogeochemistry in a Changing Climate".
[9] Smedsrud, L.H., and T. Martin (2015) Grease ice in basin‐scale sea-ice ocean models, Ann. Glaciol., 56(69), 205-306, doi:10.3189/2015AoG69A765.
[8] Martin, T., M. Steele, and J. Zhang (2014) Seasonality and long‐term trend of Arctic Ocean surface stress in a model, J. Geophys. Res. Oceans, 119, 1723-1738, doi:10.1002/2013JC009425.
[7] Latif, M., T. Martin, W. Park (2013) Southern Ocean Sector Centennial Climate Variability and Recent Decadal Trends, J. Climate, 26, 7767-7782, doi:http://dx.doi.org/10.1175/JCLI-D-12-00281.1
[6] Martin, T., W. Park, and M. Latif (2013) Multi-Centennial Variability Controlled by Southern Ocean Convection in the Kiel Climate Model, Climate Dynamics, 40(7), 2005-2022, doi:10.1007/s00382-012-1586-7.
[5] Rabenstein, L., S. Hendricks, T. Martin, A. Pfaffhuber and C. Haas (2010) Thickness and surface-properties of different sea-ice regimes within the Arctic Trans Polar Drift: Data from summers 2001, 2004 and 2007, J. Geophys. Res., 115, C12059, doi:10.1029/2009JC005846.
[4] Martin, T. and A. Adcroft (2010) Parameterizing the Fresh-Water Flux from Land Ice to Ocean with Interactive Icebergs in a Coupled Climate Model, Ocean Modelling 34(3-4), 111-124, doi:10.1016/j.ocemod.2010.05.001.
[3] Martin, T. and R. Gerdes (2007) Sea ice drift variability in Arctic Ocean Model Intercomparison Project models and observations, J. Geophys. Res. Oceans, 112, C04S10., doi:10.1029/2006JC003617.
[2] Martin, T. (2006) Comparison of Different Ridge Formation Models of Arctic Sea Ice with Observations from Laser Profiling, Ann. Glaciol., 44, 403-410, doi:10.3189/172756406781811132.
[1] Martin, Torge and Thomas Martin (2006) Anomalies of Sea Ice Transports in the Arctic, Ann. Glaciol., 44, 310-316, doi:10.3189/172756406781811826.
Non-peer reviewed articles & book chapters
Rabe, B., T. Martin, A. Solomon, and co-authors (2023), Polar Fresh Water in a Changing Global Climate: Linking Arctic and Southern Ocean Processes, Bull. Amer. Meteor. Soc., 104, E970–E979, doi:10.1175/BAMS-D-23-0046.1.
M. Latif, T. Martin, W. Park, and M. H. Bordbar (2016), Internal Southern Ocean Centennial Variability: Dynamics, Impacts and Implications for Global Warming, In: Climate Change, C.-P. Chang, M. Ghil, M. Latif, and J. M. Wallace (Eds.), World Scientific Series on Asian-Pacific Weather and Climate, Vol. 6, World Scientific Publishing Co. Pte. Ltd., Singapore, 109–124.
Martin, T., M. Steele, and J. Zhang (2014), Arctic Ocean Sea Ice Loss: Modeling the effect on Wind-to-Ocean Momentum Transfer, Witness the Arctic, Fall 2014 issue 3, (invited).
Hutchings, J., and others (2008), Role of Ice Dynamics in the Sea Ice Mass Balance, Eos Trans. AGU, 89(50), 515-516, doi:10.1029/2008EO500003.
C. Haas, S. Goebell, S. Hendricks, T. Martin, A. Pfaffling and C. v. Saldern (2007), Airborne electromagnetic mea- surements of sea ice thickness: methods and applications, In: Arctic Sea Ice Thickness: Past, Present and Future, P. Wadhams and G. Amanatidis (Eds.), European Commission, Climate Change and Natural Hazards Series, 136–148.
Guest Editor
10/2024: CLIVAR Exchanges special issue on "Advances in Emerging Antarctic Research Programs", doi: 10.36071/clivar.83.2024
Press Releases
09/2017: on the current Weddell Polynya, English / Deutsch. Follow up report on Earther.com.
07/2017: on increasingly seasonal sea ice and Arctic Amplification, English / Deutsch.
05/2013: on Southern Ocean deep convection and centennial clImate variability, German only / Deutsch.
Theses
Martin, T., Arctic sea ice dynamics: drift and ridging in numerical models and observations, PhD thesis, University of Bremen, published in Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research), Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Vol. 563 , 229pp, 2007.
Martin, T., Spatial and temporal variability of Arctic sea ice dynamics, Diploma thesis (in German), Christian Albrechts University, Kiel, 75pp, 2003.
"That's plenty. By the time we add an introduction, a few illustrations and a conclusion, it will look like a graduate thesis." [B. Watterson]
2024
T. Martin, Impacts of Greenland meltwater on ocean circulation, JCIOI ice-ocean interaction workshop, online, 14–17 Oct 2024. invited keynote talk
T. Martin, A. Biastoch and the Ocean Dynamics group, Simulating AMOC sensitivity to subpolar North Atlantic processes with eddying ocean and climate models, CLIVAR AMOC workshop, Exeter, UK, 23–25 Sep 2024. talk
T. Martin, State of the art and gaps of models: Antarctic bottom water formation and connetivity, EU Polar Science Week, Copenhagen, 3–5 Sep 2024. invited talk
T. Martin, J. Rhein, J., M. Ödalen, and M. Zeller, Spatial distribution of Antarctic meltwater governs Southern Ocean deep convection and shelf warming feedback, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024. abstract / poster
X. Xu, T. Martin, and R. Beadling, On the atmospheric response to idealized freshwater input around Antarctica, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-894. abstract / talk
I. Schiller-Weiss, T. Martin, T., and F. Schwarzkopf, Emerging impacts of enhanced Greenland melting on Labrador Sea dynamics, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024. abstract / talk
A. Pauling, N. Swart, T. Martin, et al., Sea ice and climate impacts from Antarctic ice-mass loss in the SOFIA multi-model ensemble, EGU General Assembly 2024, Vienna, Austria, 14–19 Apr 2024. abstract / talk
T. Martin, J. Rhein, M. Ödalen, and M. Zeller, The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: Simulations with FOCI, Grenoble, France, 29–31 Jan 2024.
I. Schiller-Weiss, T. Martin, F. Schwarzkopf, Enhanced Greenland Meltwater Impacts on Labrador Sea Dynamics, DRAKKAR workshop, Grenoble, France, 29–31 Jan 2024.
2023
T. Martin and A. Biastoch, Key roles for atmospheric feedback and mesoscale eddies in modelling the AMOC response to enhanced Greenland runoff, IUGG General Assembly 2023, Berlin, Germany, 12-19 July 2023, IUGG23-3852, abstract / talk
T. Martin, J. Kjellsson, J. Deutloff, J. Noack, M. Ödalen, S. Wahl, and M. Zeller, Antarctic circumpolar current strength in the FOCI climate model: Parameterizing vs. explicitly simulating mesoscale eddies, IUGG General Assembly 2023, Berlin, Germany, 12-19 July 2023, IUGG23-3802, abstract / talk
N. Swart and T. Martin, The climate response to Antarctic meltwater in a multi-model ensemble, IUGG General Assembly 2023, Berlin, Germany, 12-19 July 2023, IUGG23-3506, abstract / talk
A.G. Pauling, M. Thomas, I. Smith, J. Ridley, and T. Martin, Impact of Antarctic Ice-Mass Loss on Sea Ice and Climate in a Multi-Model Experiment, IUGG General Assembly 2023, Berlin, Germany, 12-19 July 2023, IUGG23-4705. abstract / talk
J. Kjellsson, S. Wahl, M. Ödalen et al., Reducing Southern Ocean biases in the FOCI climate model, IUGG General Assembly 2023, Berlin, Germany, 12-19 July 2023, IUGG23-4349. abstract / talk
T. Martin and A. Biastoch, Ocean response to Greenland melting in a hierarchy of model configurations: Relevance of eddies and an interactive atmosphere, EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023, EGU23-5909. abstract / talk
I. Schiller-Weiss, T. Martin J. Karstensen, and A. Biastoch, Does freshwater content of the East Greenland Current show imprints of increasing meltwater runoff? EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023, EGU23-6219. abstract / poster
M. Zeller and T. Martin, On the implications of a warm bias in modelling an eddying Southern Ocean, EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023, EGU23-12422. abstract / poster
D. Hohn, T. Martin, N. Mengis, and E. Monteiro, Possible causes for regional zero emissions commitment signals, EGU General Assembly 2023, Vienna, Austria, 23–28 Apr 2023, EGU23-7493. abstract / talk
T. Martin and A. Biastoch, Response to enhanced Greenland runoff in a hierarchy of ocean and climate model configurations, DRAKKAR workshop, Grenoble, France, 30 Jan–1 Feb 2023.
I. Schiller-Weiss, T. Martin J. Karstensen, and A. Biastoch, Do salinity variations along the East Greenland shelf show imprints of increasing meltwater runoff? DRAKKAR workshop, Grenoble, France, 30 Jan–1 Feb 2023.
2022
M. Zeller and T. Martin, Role of mesoscale dynamics in Southern Ocean heat uptake and storage, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-4852. abstract
I. Schiller-Weiss, T. Martin, A. Biastoch, and J. Karstensen, Do salinity variations along the East Greenland shelf show imprints of increasing meltwater runoff?, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-5135. abstract
H. Grosselindemann, S. Ryan, C. Ummenhofer, T. Martin, and A. Biastoch, Marine Heatwaves and their Depth Structures on the Northeast US Continental Shelf, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-1015. abstract
J. Kjellsson, S. Wahl, T. Martin, and W. Park, Understanding and reducing surface biases over the Southern Ocean in the FOCI climate model, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-10363. abstract
T. Martin and A. Biastoch, Atmosphere-coupling dampens the North Atlantic’s response to enhanced Greenland meltwater runoff, Ocean Sciences Meeting 2022, online, 24 Feb–4 Mar 2022. abstract
A. Biastoch et al., Variability and trends of the Atlantic Meridional Overturning Circulation in a series of eddy-rich ocean model hindcasts, Ocean Sciences Meeting 2022, online, 24 Feb–4 Mar 2022. abstract
H. Grosselindemann, S. Ryan, C. Ummenhofer, T. Martin, and A. Biastoch, Marine Heatwaves and their Depth Structure on the Northeast US Continental Shelf, Ocean Sciences Meeting 2022, online, 24 Feb–4 Mar 2022. abstract
N. Whitney et al., Investigating Mid-Atlantic Bight Cold Pool Bottom Temperature Changes Over the Last Two Centuries, Ocean Sciences Meeting 2022, online, 24 Feb–4 Mar 2022. abstract
2021
L. Patara, T. Martin, I. Frenger, J.K. Rieck, C.-T. Chien, Modeling the physical drivers of the decadal variability of the Southern Ocean carbon uptake, EGU General Assembly, online, 19–30 April 2021. abstract / vPICO
J. Deutloff, T. Martin, J. Kjellsson, The Representation of the ACC at Drake Passage in NEMO-based climate models, DRAKKAR workshop, online, January 2021. abstract / talk
2020
J. Kjellsson, W. Park, T. Martin, E. Maisonnave, M. Latif, Greatness from small beginnings: Impact of oceanic mesoscale on weather extremes and large-scale atmospheric circulation in midlatitudes, EGU General Assembly, online, 4–8 May 2020. abstract
A. Drews, T. Martin, K. Matthes, J. Harlaß, A. Biastoch, North Atlantic climate mean state and variability: Local effects of mesoscale ocean dynamics, Ocean Sciences Meeting, San Diego, CA, USA, 16–21 February 2020. abstract / talk
T. Martin, J. Harlaß, A. Biastoch, K. Matthes, Role of atmospheric feedbacks in the ocean’s response to enhanced Greenland Ice Sheet melting, Ocean Sciences Meeting, San Diego, CA, USA, 16–21 February 2020. abstract / talk
T. Martin, Southern Ocean deep convection in climate simulations: Turning a blind eye does not help — An opinion piece, Gateways to the Ocean: A Symposium Celebrating Arnold Gordon's Contributions to Physical Oceanography, La Jolla, 13–14 February 2020. talk
pre 2020
T. Martin, J. Harlass, and A. Biastoch, North Atlantic’s response to Greenland melting: Role of atmospheric feedbacks and mesosale ocean dynamics, EGU General Assembly, Vienna, Austria, 7–12 April 2019. abstract / poster
T. Martin and T.W.N. Haine, Does the Arctic Amplification peak this decade?, EGU General Assembly, Vienna, Austria, 23-28 April 2017. abstract / poster
T. Martin, J.B. Pedro, E.J. Steig, M. Jochum, W. Park, and S.O. Rasmussen, Antarctic warming driven by internal Southern Ocean deep convection oscillations, EGU General Assembly, Vienna, Austria, 17-22 April 2016. abstract / talk
T. Martin, H. Dosser, M. Steele, J. Thomson, M. Tsamados, and S. Zippel, Does sea ice retreat reduce or increase the momentum flux into the Arctic Ocean?, Ocean Sciences Meeting, New Orleans, LA, USA, 21–26 February 2016. abstract / talk
T. Martin, M. Tsamados, and D.L. Feltham, Changing summer sea ice roughness modifies momentum transfer into the Arctic Ocean, EGU General Assembly, Vienna, Austria, 12–17 April 2015. abstract / talk
T. Martin, A. Reintges, W. Park, and M. Latif, Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models, AGU fall meeting, San Francisco, CA, USA, 15-19 December 2014. abstract / poster
T. Martin, W. Park, and M. Latif, Southern Ocean Deep Convection Forcing of North Atlantic Centennial Variability, EGU General Assembly, Vienna, Austria, 28 April–2 May 2014. abstract / talk
T. Martin, M. Steele, and J. Zhang, Contrasting effects of sea ice thinning and retreat on Arctic Ocean momentum influx, EGU General Assembly, Vienna, Austria, 28 April-2 May 2014. abstract / poster
T. Martin, M. Steele, and J. Zhang, Trends in Arctic Ocean Momentum Influx and the Role of Optimal Sea Ice Cencentration, Ocean Sciences Meeting, Honolulu, HI, USA, 23-28 February 2014. abstract / poster
T. Martin and M. Winton, The effect of lead formation by ridging on the Arctic climate in coupled model simulations, AMS 12th Conference on Polar Meteorology and Oceanography, Seattle, WA, USA, 29 April-1 May 2013. abstract / poster
T.Martin, Sea ice deformation and the ice thickness distribution: How novel observations can help to improve models, AGU fall meeting, San Francisco, CA, USA, 3–7 December 2012. abstract / invited talk
T. Martin, M. Latif, and W. Park, Southern Ocean Centennial Variability Impact on North Atlantic Sea Level, AGU fall meeting, San Francisco, CA, USA, 3-7 December 2012. abstract / poster
T. Martin, R. Gerdes, and F. Kauker, On trends in Arctic sea-ice motion: spatial distribution, significance, and the role of the ocean, EGU General Assembly, Vienna, Austria, 3–8 April 2011. abstract / talk
T. Martin, W. Park, and M. Latif, Two types of multi-centennial variability of the Southern Ocean deep convection: How sea ice tips the scale, EGU General Assembly, Vienna, Austria, 3–8 April 2011. abstract / poster
L.H. Smedsrud, T. Martin, and J. Debernard, Grease ice parameterization in sea-ice ocean models, EGU General Assembly, Vienna, Austria, 3–8 April 2011. abstract
T. Martin and M. Winton, Sea-Ice Ridging in a Global Climate Model: Ice Thickness Increase vs. Lead Formation, IGS Sea Ice Symposium, Tromsø, Norway, 31 May–4 June 2010. abstract / poster
T. Martin and A. Adcroft, Interactive Icebergs: A New Component in Global Coupled Climate Models, GFDL Review, Princeton, NJ, June 2009. poster
T. Martin and A. Adcroft, Impact of Interactive Icebergs in a Global Present Day Climate Simulation, AGU Fall Meeting, San Francisco, CA, USA, 15–19 December 2008. abstract / talk
T. Martin and R. Gerdes, The Variety of Sea Ice Drift and Transport Estimates from Models and Observations, EGU General Assembly, Vienna, Austria, 2–7 April 2006. abstract / talk