In engineering, a fail-safe is a design feature or practice that, in the event of a specific type of failure, inherently responds in a way that will cause minimal or no harm to other equipment, to the environment or to people. Unlike inherent safety to a particular hazard, a system being "fail-safe" does not mean that failure is impossible or improbable, but rather that the system's design prevents or mitigates unsafe consequences of the system's failure. That is, if and when a "fail-safe" system fails, it remains at least as safe as it was before the failure.[1][2] Since many types of failure are possible, failure mode and effects analysis is used to examine failure situations and recommend safety design and procedures.

Some systems can never be made fail-safe, as continuous availability is needed. Redundancy, fault tolerance, or contingency plans are used for these situations (e.g. multiple independently controlled and fuel-fed engines).[3]


The Opposite Of Fail


DOWNLOAD 🔥 https://tiurll.com/2xYcl0 🔥



Fail-safe (foolproof) devices are also known as poka-yoke devices. Poka-yoke, a Japanese term, was coined by Shigeo Shingo, a quality expert.[10][11] "Safe to fail" refers to civil engineering designs such as the Room for the River project in Netherlands and the Thames Estuary 2100 Plan[12][13] which incorporate flexible adaptation strategies or climate change adaptation which provide for, and limit, damage, should severe events such as 500-year floods occur.[14]

Fail-safe and fail-secure are distinct concepts. Fail-safe means that a device will not endanger lives or property when it fails. Fail-secure, also called fail-closed, means that access or data will not fall into the wrong hands in a security failure. Sometimes the approaches suggest opposite solutions. For example, if a building catches fire, fail-safe systems would unlock doors to ensure quick escape and allow firefighters inside, while fail-secure would lock doors to prevent unauthorized access to the building.

During the Cold War, "failsafe point" was the term used for the point of no return for American Strategic Air Command nuclear bombers, just outside Soviet airspace. In the event of receiving an attack order, the bombers were required to linger at the failsafe point and wait for a second confirming order; until one was received, they would not arm their bombs or proceed further.[15] The design was to prevent any single failure of the American command system causing nuclear war. This sense of the term entered the American popular lexicon with the publishing of the 1962 novel Fail-Safe.

(Other nuclear war command control systems have used the opposite scheme, fail-deadly, which requires continuous or regular proof that an enemy first-strike attack has not occurred to prevent the launching of a nuclear strike.)

Hi, i think its asoftware bug, i cant find anything in internet about it, but at least 5 asiairs of my partners have the same problem.

So here we go: 

After conecting all the devices, chek the date, the latitud and longitude, etc etc.. i made the PA, then +5 from the Polar to make a solve and sync the mount. At this point we can se in the sky map where we are and where we want to go. Then I select an area and press goto... the problem appears, the telescope goes at the opposite direction we expected... so we cant center the objetc obviously, then it mmoves agains more far away since i stop the goto or the mount.

It only happens sometimes, not allways and its made made me crazy cos i dont know if its a software problem, a hardware (i think not cos we have the same problem in 5 asiairs.. too much coincidence), or something we are all doping something wrong.

Happens to anyone else?

CAn u bring me a answer? maybe a solution?... im about to get crazy...

You know there are some people who buy something on credit but fail to pay it back or borrow some money from friends but don't give it back on time. In my native language, We have two words to describe such people and those who are opposite of them who pay their debts on time so they can be trusted when it comes to lending them some money.

A habitual or long-term defaulter might be called a deadbeat. This is especially used, for instance, for someone who fails to fulfill financial obligations other than loans, such as child support payments.

In many ways the Kickstarter campaign should have failed. Its developers were unknown. The game had no existing fanbase. It didn't have fancy graphics or promise a product so enormous that players would need to hook car engines to their computers to make it work. The developers didn't set out to make a commercial product backed by tens of thousands of people.

The most promising compound to come out of this programme, ICI 33,828 (which had a similar structure to 22,365), was therefore tested in pre-menopausal patients with mammary carcinoma, which was justified on the grounds that it might have a therapeutic as well as an anti-fertility effect. It was also tried in prostatic cancer, however the clinicians involved in these trials at the MRC Clinical Endocrinology Unit in Edinburgh received complaints from patients about nausea, anorexia, and occasional vomiting. Walpole also discovered that, before trials with 33,828 could begin, 22,365 had been given in November 1960 to a psychotic patient who was 15 weeks pregnant in order to induce abortion. However, the drug had failed to terminate the pregnancy, and estrogen excretion had remained unaffected by the treatment. The fetus, which had therefore had to be removed surgically, appeared normal. At the same time as plans for more extensive clinical studies, preferably closer to home so that his team could be more directly involved in the trials, Walpole therefore also made plans to develop more sensitive assay methods for gonatrophins in urine, blood, and pituitary, to better assess the clinical effects of their lead compound, and obtain more reliable measures of activity in animal experiments12. Shortly afterwards, in 1962, Mike Harper, a young endocrinologist who would play a significant part in the tamoxifen story, was invited to join the team.

The null hypothesis is essentially the "devil's advocate" position. That is, it assumes that whatever you are trying to prove did not happen (hint: it usually states that something equals zero). For example, the two different teaching methods did not result in different exam performances (i.e., zero difference). Another example might be that there is no relationship between anxiety and athletic performance (i.e., the slope is zero). The alternative hypothesis states the opposite and is usually the hypothesis you are trying to prove (e.g., the two different teaching methods did result in different exam performances). Initially, you can state these hypotheses in more general terms (e.g., using terms like "effect", "relationship", etc.), as shown below for the teaching methods example:

So, you might get a p-value such as 0.03 (i.e., p = .03). This means that there is a 3% chance of finding a difference as large as (or larger than) the one in your study given that the null hypothesis is true. However, you want to know whether this is "statistically significant". Typically, if there was a 5% or less chance (5 times in 100 or less) that the difference in the mean exam performance between the two teaching methods (or whatever statistic you are using) is as different as observed given the null hypothesis is true, you would reject the null hypothesis and accept the alternative hypothesis. Alternately, if the chance was greater than 5% (5 times in 100 or more), you would fail to reject the null hypothesis and would not accept the alternative hypothesis. As such, in this example where p = .03, we would reject the null hypothesis and accept the alternative hypothesis. We reject it because at a significance level of 0.03 (i.e., less than a 5% chance), the result we obtained could happen too frequently for us to be confident that it was the two teaching methods that had an effect on exam performance.

If our statistical analysis shows that the significance level is below the cut-off value we have set (e.g., either 0.05 or 0.01), we reject the null hypothesis and accept the alternative hypothesis. Alternatively, if the significance level is above the cut-off value, we fail to reject the null hypothesis and cannot accept the alternative hypothesis. You should note that you cannot accept the null hypothesis, but only find evidence against it.

A comprehensive list of all the reasons why brands fail would make the Panama Papers look like CliffsNotes. But there are a handful of issues that bring down even the most promising brands, time and time again.

Figure 1. Action selection if valve failure is to result in full reflux, and if under normal operation, the distillate flow is manipulated to keep the column temperature constant while the accumulator level is controlled by manipulating the reflux flow.

Valve failure position is determined by safety considerations. If, in case of failure, you want your column to go on full reflux, your selection is right (Figure 1). Assuming that the valve actuators are spring-operated pneumatic ones (you did not say what they were), and assuming that you define "failure" as the loss of air supply, the spring will act to open a fail-open (FO) valve and to close a fail-closed (FC) valve, regardless what the controller actions are. (I neglect to mention the role of positioners because I don't like to use them on flow control valves because they can be slower than the flow process and, therefore, they can cause cycling.)

A: Not quite right. The control valve failure action (and sometimes the valve positioner action) is also relevant. To ensure that you have an overall negative feedback, you need to follow the entire loop from sensor (increase/decrease output as variable increases) through the controller (where you can reverse the gain) to the positioner (normally direct action, but foolish folks sometimes try to hide mistakes there by reversing output) to valve (does increasing stem position increase or decrease the measured variable?). be457b7860

MindGenius 2019 v8.0.1.7183 with Patch

Driver Woxter Sherpa 100 Gps

Contagion VR: Outbreak keygen download pc

Pixel Fish Full Crack [portable Edition]l

Error Update Sep For Mac