GITHUB LINK
This is a monitoring app built with Python, and it would be containerized with docker and deployed to EkS
Acquire
Learn Docker and How to containerize a Python application
Creating Dockerfile
Building DockerImage
Running Docker Container
Docker Commands
Create an ECR repository using Python Boto3 and push Docker Image to ECR
Learn Kubernetes and Create EKS cluster and Node groups
Create Kubernetes Deployments and Services using Python!
Install AWS CLI, then Go to your AWS account and get your secret keys, and configure the workspace `aws configure`
Install Python on your workstation and a Python extension in vscode
The application uses the **`psutil`** and **`Flask`, Plotly, boto3** libraries. Install them using pip `pip3 install -r requirements.txt`
Install dependencies psutil `pip3 install psutil` and flask `pip install flask`
Install Python for ECR SDK `pip install boto3`
Install Kubernetes, add the K8S python dependencies client library `pip install Kubernetes` and the extension of Kubernetes in vscode
Install the docker extension in vscode
Create `requirement.txt` file then Install them using pip `pip3 install -r requirements.txt`
Flask==2.2.3
MarkupSafe==2.1.2
Werkzeug==2.2.3
itsdangerous==2.1.2
psutil==5.8.0
plotly==5.5.0
tenacity==8.0.1
boto3==1.9.148
kubernetes==10.0.1
To run the application, navigate to the root directory of the project and execute the following command:
$ python3 app.py
This will start the Flask server on **`localhost:5000`**. Navigate to http://localhost:5000/ on your browser to access the application.
Create a `Dockerfile` in the root directory of the project with the following contents:
# Use the official Python image as the base image
FROM python:3.9-slim-buster
# Set the working directory in the container
WORKDIR /app
# Copy the requirements file to the working directory
COPY requirements.txt .
RUN pip3 install --no-cache-dir -r requirements.txt
# Copy the application code to the working directory
COPY . .
# Set the environment variables for the Flask app
ENV FLASK_RUN_HOST=0.0.0.0
# Expose the port on which the Flask app will run
EXPOSE 5000
# Start the Flask app when the container is run
CMD ["flask", "run"]
Build the Docker image, and execute the following command:
$ docker build -t <image_name> .
Run the Docker container, and execute the following command:
$ docker run -p 5000:5000 <image_name>
This will start the Flask server in a Docker container on `localhost:5000`. Navigate to http://localhost:5000/ on your browser to access the application.
Create an ECR repository using Python in a folder `ecr.py`:
Configure the ECR repository to your workspace to enable a push, you will find the process in the console view push commands
import boto3
# Create an ECR client
ecr_client = boto3.client('ecr')
# Create a new ECR repository
repository_name = 'my-ecr-repo'
response = ecr_client.create_repository(repositoryName=repository_name)
# Print the repository URI
repository_uri = response['repository']['repositoryUri']
print(repository_uri)
Then run this `python3 ecr.py`
Push the Docker image to ECR using the push commands on the console:
$ docker push <ecr_repo_uri>:<tag>
Create an EKS cluster `cloud-native-cluster` and add a node group in the AWS console
Create a node group `nodes` in the EKS cluster.
Create deployment and service in a folder `eks.py`
from Kubernetes import client, config
# Load Kubernetes configuration
config.load_kube_config()
# Create a Kubernetes API client
api_client = client.ApiClient()
# Define the deployment
deployment = client.V1Deployment(
metadata=client.V1ObjectMeta(name="my-flask-app"),
spec=client.V1DeploymentSpec(
replicas=1,
selector=client.V1LabelSelector(
match_labels={"app": "my-flask-app"}
),
template=client.V1PodTemplateSpec(
metadata=client.V1ObjectMeta(
labels={"app": "my-flask-app"}
),
spec=client.V1PodSpec(
containers=[
client.V1Container(
name="my-flask-container",
image="568373317874.dkr.ecr.us-east-1.amazonaws.com/my-cloud-native-repo:latest",
ports=[client.V1ContainerPort(container_port=5000)]
)
]
)
)
)
)
# This is an automation to run deployment and svc using python
# Create the deployment
api_instance = client.AppsV1Api(api_client)
api_instance.create_namespaced_deployment(
namespace="default",
body=deployment
)
# Define the service
service = client.V1Service(
metadata=client.V1ObjectMeta(name="my-flask-service"),
spec=client.V1ServiceSpec(
selector={"app": "my-flask-app"},
ports=[client.V1ServicePort(port=5000)]
)
)
# Create the service
api_instance = client.CoreV1Api(api_client)
api_instance.create_namespaced_service(
namespace="default",
body=service
)
make sure to edit the name of the image on line 25 with your image Url.
To run the K8s commands for deployment and service instead of adding the python script you create `deployment.yml and service.yml` use these commands **`kubectl apply -f deployment.yml`** and **`kubectl apply -f service.yml`**
Configure the AWS EKS to your workspace
aws eks update-kubeconfig - name cloud-native-cluster
Once you run this file by running `python3 eks.py` deployment and service will be created.
Check by running the following commands:
kubectl get deployment -n default (check deployments)
kubectl get service -n default (check service)
kubectl get pods <name of pod> -n default (to check the pods)
#edit images created if u made errors
kubectl edit deployment my-flask-app -n default
#this will pull down the editted image
kubectl get pod -n default -w
Once your pod is up and running, run the port-forward to expose the service
kubectl port-forward service/<service_name> 5000:5000
Your app should be life.
Linkedin: www.linkedin.com/in/lorettaeyimina