[C12] Rethinking Reconstruction-based Graph-level Anomaly Detectors: Limitations and a Simple Remedy.
S. Kim, S. Lee, F. Bu, S. Kang, K. Kim, J. Yoo, and K. Shin
In NeurIPS 2024
[C11] Towards Better Utilization of Multiple Views for Bundle Recommendation.
[C10] A Survey on Hypergraph Neural Networks: An In-Depth and Step-By-Step Guide.
S. Kim*, S. Lee*, Y. Gao, A. Antelmi, M. Polato, and K. Shin
In KDD 2024 (survey)
[C9] SLADE: Detecting Dynamic Anomalies in Edge Streams without Labels via Self-Supervised Learning.
[C8] Feature Distribution on Graph Topology Mediates the Effect of Graph Convolution: Homophily Perspective.
S. Lee, S. Kim, F. Bu, J. Yoo, J. Tang, and K. Shin.
In ICML 2024
[C7] Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs.
L. Liang, S. Kim, K. Shin, Z. Xu, S. Pan, and Y. Qi
In ICML 2024
[J3] Prototype-Based Explanations for Graph Neural Networks (Extended version of [C1]).
Y. Shin, S. Kim, and W. Shin
In TPAMI (Transactions on Pattern Analysis and Machine Intelligence) 2024
[C6] FlowerFormer: Empowering Neural Architecture Encoding using a Flow-aware Graph Transformer.
[C5] HypeBoy: Generative Self-Supervised Representation Learning on Hypergraphs.
S. Kim, S. Kang, F. Bu, S. Lee, J. Yoo, and K. Shin.
In ICLR 2024